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Abstract—The wall gradient (b{/B) of the b-boundary layer is evaluated from solutions to the velocity
equation by integration. By dividing the range of integration into two parts (a) that over the velocity
boundary layer and (b) that for main-stream flow, a formula is derived from which this wall gradient
can be evaluated accurately for any value of the Prandtl/Schmidt number. Methods are then given for
doing this either with a desk calculator or on a computer. These methods are not convenient however,
when the Prandtl/Schmidt number has a high value and there is a high rate of inward mass flow; an
asymptotic formula is therefore derived for this case. A table of values of the wall gradient, most of
which are new, is then given for the case of zero main-stream pressure gradient. A discussion follows
of the asymptotic behaviour of functions of the b-boundary layer when various parameters take
extreme values and some of these functions are plotted.

Résumé—Le gradient & la paroi (bj/B) de la couche limite est évalué, par intégration, a partir des
solutions de ’équation du mouvement. En divisant I'intervalle d’intégration en deux parties: (a) celui
qui couvre la couche limite dynamique et (b) celui relatif & ’écoulement principal, on établit une
formule a partir de laquelle on peut calculer avec précision le gradient a la paroi, pour une valeur
quelconque du nombre de Prandtl/Schmidt. Des méthodes sont ensuite données pour effecteur ce
calcul soit & I'aide d’une machine & calculer de bureau soit avec une calculatrice. Toutefois, ces
méthodes ne conviennent pas quand le nombre de Prandtl/Schmidt est élevé et lorsqu’il existe un
transport de masse important dans la couche limite; pour ce cas, une formule asymptotique a été
établie. Une table des valeurs du gradient a la paroi, dont la plupart sont nouvelles, est ensuite donnée
quand le gradient de pression est nul dans I’écoulement principal. Suit une discussion sur le com-
portement asymptotique des fonctions dans la couche limite b lorsque les différents paramétres
prennent des valeurs extremes; quelques unes de ces fonctions ont été tracées.

Zusammenfassung—Durch Integration von Losungen der Geschwindigkeitsgleichung wurde der
Wandgradient (b;/B) der b-Grenzschicht berechnet. Teilt man den Integrationsbereich (a) in den
Bereich der Geschwindigkeitsgrenzschicht und (b) in den Bereich der Hauptstromung, so erhilt man
cine fiir beliebige Werte der Prandtl/Schmidtzahl giiltige Formel fér die exakten Werte des Wand-
gradienten. Diese Berechnung ist fiir Hand- und Elektronenrechner angegeben. Fiir grosse Werte der
Prandtl/Schmidtzahl und einen grossen, nach innen durch die Granzfliche tretenden Massenstrom ist
diese Berechnungsmethode unbequem, deshalb wurde dafiir eine asymptotische Formel abgeleitet.
Eine Tabelle vorwiegend neuer Werte des Wandgradienten ist fiir einen Druckgradienten Null der
Hauptstromung angegeben. Fiir Extremwerter einiger Parameter zeigen die Funktionen der 5-Grenz-
schicht ein asymptotisches Verhalten. Einige dieser Funktionen sind als Diagramme mitgeteilt.

Amnoranma—I'paguent (b;/B) norpanudnoro ciaos b HAa cTeHKe BRMUCIAETCHA M3 pellleHuit
YpaBHEHUA CKOPOCTH MYTEM ero MHTerpupoBaHuA. PasmenMB WMHTerpadsl Ha fiBe YacTi:
(a) mo morpanuuHOMYy Cii00 K (6) ANA OCHOBHOTO NOTOKA, MONLYYUM GOPMYITY, U3 KOTOPOH
MOMHO TOYHO BHIYHCJMTHL IpPagueHT Ha CTeHke HIA mobuix umcen Ilpampraa/IlImupgra.
Taxe B cTaThbe IPHBOTHTCA METOAMKA BHIYMCIEHUA C HOMOLIBI CYETHM-BHUMCIIN-TEILHEIX
vannn. OZHAKO, 9TM MeTOAH HENPUroguu B ciayyae Goapmmx uncen Ilpamgrasa/IImuara
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ui GoJbIIOH CHOPOCTH TeYeHHA; B HTOM Cilyyae BHIBOIMTCH ACHMDTOTHYeCKAA $opMyna.
B xoHue crate® mpuBejeHa Talanua BejJUYMH PPATHeHTa Ha CTeHwe, GOMABIAR JaCTh M3
KOTODHIX J3ETCA BUEPBHIC, JIsT Cliydasd HYJEBOro UPajHEHTA JABIeHMS B OCHOBHOM MOTOKe.
Paccmartpusaerca acmMiroTHuecKoe IoBefeHue (YHKuuMit WOrpaHHUEOTO €O b, Korja
PaBiIMYHbIE IapaMeTpH NPUHUMAT KpafiHie BHAYEHWS, 4 HeKOTODPHE (YHKUMM JaHBI

rpafuyecku.
NOTATION p,
Most of the quantities given below are
dimensionless; where they are not the dimen-
sions are given in brackets. q,
coefficients occurring in equation (23) Re,
and defined in equations (26) to (33); u,
coefficients occurring in equation (20)
defined in equation (21); Ua,
conserved fluid property in dimension- v,
less form (see Paper 3 for a discussion of
its form and meaning); Vg
gradient of & in the fluid at the interface; w,
see equation (10};
value of b in the main-stream; it is the X,
driving force for mass transfer (dis-
cussed fully in Paper 3);
constant occurring in equation (1); X,
abbreviation for {f¢/f8) which occurs
in equations (26) to (34), ¥,
dimensionless distance occurring in
equation (15); it is the value of the Y,
“similar” co-ordinate » at which the
flow can be regarded as inviscid;
abbreviation for (8/f§) which occurs in Z,

for

£ {'f") values

J B35

Fg’

Nu,

equaticns (26) to (34}'
UHII?TIS{OIH&SS stream 1uucuO‘ﬁ ill
lar” co-ordinates defined in equation
@;

value of f at the interface; see equation

;

(LSS

Sitiu~

of the derivatives of f at the

mterface,

function which measures the rate of
gI'OW[D. WlUl alsunw X UI UIC momentunt
boundary layer thickness 8,; see equa-
tion (57) and Appendix;

diffusion constant; the thermal diffusi-
vity of the fluid for heat transfer, the
diffusion coefficient of a mass com-
ponent in the fluid mixture for mass
transfer (ft?/h);

constant occurring in equation (1);
Nusselt number in terms of the length x;

number occurring in equation (22)

specifying terms in the expanded form
of equation {20V

MuG iU SV,

number occurring in equation (21)
specifying terms in equation (20);

focal Reynolds number (=ugx/v);
velocity component parallel to the inter-
face (ft/h);

value of u in the main-stream (ft/h);

velocity component normal to the inter-
fore (Ft/hY.

18 ut/nyg,
value of v at the interface (ft/h);
curvature parameter in terms of the
convection thickness 4;; equation (46);
distance parallel to the interface
measured from the start of the boundary
layer (ft);

curvature parameter in terms of the

distance measured perpendxcular to the
interface (ft);

function which is a measure of the rate
of growth with distance x of the con-
duction thickness 4,; equation (45);
function which is a measure of the rate
of growth with distance x of the con-

£ AT

VCLUOH thickness 112, cquduon 1% I)

Greek symbols

B,

”,
8%,

parameter occurring in the velocity
equation; it is a measure of the main-
stream pressure gradient; equation (2);
fluid property caﬂed the *“‘exchange

orvan 1 /Fr hY) .
IV Uy ny Uofit iy,

affinciant?
cochcient

displacement boundary layer thickness
in “similar’” co-ordinates; defined by
equation (13), (ft);

momentum boundary layer thickness,
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d,, convection boundary layer thickness,
® u b
= L ia (1 - E) dy, (ft);
4,, conduction boundary layer thickness,

= BJ(0b/0y),, (f);

n,  ‘‘similar” dimensionless length co-
ordinate which gives the distance of a
point from the interface, equation (3);

u#,  dynamic viscosity of fluid (Ib/ft h);

v,  kinematic viscosity of fluid (= u/fp),
(ft*/h);

p,  density of fluid (Ib/ft%);

e, Prandtl or Schmidt number (== v/K);

@, integration variable used in section 3.4,
defined in equation (18);

¢,  stream function (ft2/h).

Subscripts
G, denotes fluid state in the main-stream;
m, denotes terms in equation (23);
0, denotes fluid state adjacent to the inter-
face;
g, denotes terms in equation (20).

1. INTRODUCTION

1.1. General remarks

IN EARLIER papers of the present series it was
shown that when the fluid properties are
uniform the prediction of mass transfer rates
through laminar boundary layers can be reduced
to the solution of two simultaneous partial
differential equations. The velocity equation
governs the distribution in the boundary layer of
momentum, shear and other purely mechanical
quantities; this was considered in Paper 1,
Spalding [1] and Paper 2, Spalding and Evans
{2]. The b-equation governs the distribution of
other conserved fluid properties; this was dis-
cussed in Paper 3, Spalding and Evans [3].

It was also shown that for ‘“similar” flows
these equations reduce to ordinary differential
equations which can be solved exactly. These
“similar™ solutions are important not only in
their application to strictly “similar” flows but
also serve as a basis for more general, if approxi-
mate, methods applicable to problems involving
non-similar flows.

An important quantity occurring in the
b-equation is the “wall gradient” (b;/B), where
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by 1s the gradient of the conserved fluid property
b with respect to the “similar” dimensionless
distance 7, the suffix denoting the value at
n = 0, and B is the value of b in the main-
stream. In principle this wall gradient can be
evaluated by integration once the distribution of
the stream function is known.

In Paper 3 it was shown that comparatively
few exact values of the wall gradient could be
found in the literature. Most of them related
to the case of zero main-stream pressure
gradient and were confined to a fairly narrow
range near unity in the Prandtl/Schmidt number
o. Paper 3 also contained tables from which
approximate values of (by/B) could be obtained
for wide ranges in the main-stream pressure
gradient and Prandt!/Schmidt number.

Paper 3a, Evans [4], was concerned with the
case of zero mass transfer. Series were given
from which the wall gradient could be evaluated
accurately for wide ranges in the main-stream
pressure gradient and for any value greater than
0-5 of the Prandtl/Schmidt number o.

1.2. Outline of the present paper

The main aims of the present paper are to
give methods of evaluating the wall gradient
(b,/B) accurately and to present a table of values
for the case of zero main-stream pressure
gradient. This table covers wide ranges in the
fluid Prandtl/Schmidt number as well as the
mass transfer rate. Formulae and methods of
calculation are given in a general form which
hold even when the main-stream pressure
gradient is not zero, but results for non-zero
values of this parameter are to be given in later
papers.

After a brief statement of the mathematical
problem which has to be solved, an expression
is derived for the reciprocal of the wall gradient
which greatly simplifies the problem of numerical
evaluation. This can be used for any values of the
parameters specifying the Prandtl/Schmidt num-
ber, main-stream pressure gradient or mass
transfer rate.

Values of the wall gradient have been obtained
in three ways. When solutions to the velocity
equation are known, calculations with a desk
calculator can give high accuracy; the method
used is described in section 3.2. Most of the
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results were, however, obtained on a computer
the method for which is outlined in section 3.3.
But, when the Prandtl/Schmidt number has a
high value and the suction rate is high, neither
of these methods is suitable so an asymptotic
formula which gives high accuracy under these
conditions is derived in section 3.4

The results obtained for zero main-stream
pressure gradient are discussed in section 4 and
formulae are given in section 5 from which
other functions of the b-boundary layer may
be calculated. Since these functions are readily
evaluated from the wall gradient and the known
values of the various parameters, they are not
tabulated in the present paper.

In section 6 an examination is made of
the asymptotic behaviour of functions in the
b-boundary layer for extreme values of the
parameters and in section 7 some of these
functions are plotted and discussed.

2. STATEMENT OF THE MATHEMATICAL
PROBLEM

The forms which the two-dimensional,
laminar boundary layer equations take for
“similar” flows have been fully discussed in
earlier papers in the present series. For purposes
of reference and in order to explain the ter-
minology used, the equations are stated briefly
in the present section.

2.1. The “similar’ velocity equation

In Paper 1, Spalding [1], it was shown that for
“similar” solutions to the two-dimensional,
laminar boundary layer equations with constant
fluid properties, the main-stream velocity ug
obeys the equation:

o~ Cue M
where C and » are constants and x is the distance
measured parallel to the wall.

A parameter 8 is obtained from the constant
by the relationship:

2
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and a dimensionless distance co-ordinate 7 is
defined by:

(1 dug)b? ;
"*y(w'd{) )

where y is the distance perpendicular to the wall
and v is the kinematic viscosity. If now a
dimensionless stream function f'is related to the
stream function ¢ by:

(L gy
UgG V,B dx ;

velocities in the boundary layer are governed
by the ordinary differential equation:

U+ B0 - f =0 &)

with the boundary conditions:

1=0, f=/fu f=0]
7 —> 00, f’—*] J (6)

= )

In equations (5) and (6) the primes denote
differentiation with respect to the independent
variable » and the quantity f, in equation (6),
which is a constant for “similar” flows, is related
to the velocity v, with which mass flows through
the wall by:

v dug) 12
Jo=—1 (B axi) . %

2.2. The “similar” b-equation

This equation is a generalization of the energy
equation familiar in the study of heat transfer.
It has been fully discussed by Spalding [5] and
“similar” solutions to it were considered in
Paper 3. In the latter paper it was shown that
for a certain restricted class of “similar” solu-
tions a conserved fluid property, represented in
suitable dimensionless form by the quantity b,
satisfies the ordinary differential equation:

b ' +ofb =0 (8)
with boundary conditions:
7 =0, b=:0
7 — 0, b->B } ) (9)

In addition to these boundary conditions the
relationship:

by = —0 fi (10)
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which relates the b-profile to the f-profile, is also
satisfied.

In these equations the primes again denote
differentiation with respect to 5, fand f; are the
stream functions occurring in the velocity
equation, o is the Prandtl/Schmidt number and
B is the value of b in the main-stream.

From equation (8) it may readily be shown
that the distribution of b is given by:

b foexp —{afg fdn} dn
B |7 exp —{ofg fdn}dy

and the reciprocal of the wall gradient is given
by:

(1n

(1?0) = [y exp—{ofy fdn}dn. (12)

The present paper is concerned with methods
of evaluating the right-hand side of equation (12)
for any value of o, given solutions to equation
(5) with boundary conditions (6). Since such
solutions are given for fixed values of f;, and in
view of the relationship given in equation (10),
the problem amounts to evaluating the mass
transfer driving force B, given the fluid property
o and the velocity, specified by f;, at which mass
flows through the interface. The main-stream
pressure gradient, of course, also affects the
distribution of f with » and thereby the value of
B obtained using equations (12) and (10).

The table of values of (5,/B) to be given later
apply to the case when the parameter g occurring
in equation (5) is zero.

As well as evaluating the right-hand side of
equation (12) the method of calculation could
also be adapted to obtaining the distribution of
b with 7 as given in equation (11) but this is not
done in the present paper.

3. EVALUATING THE INTEGRAL

3.1. Formula for numerical integration

It is known that the relative thicknesses of the
velocity boundary layer and the b-boundary
layer depend on the value of the Prandtl/
Schmidt number o. For the unique case when
the main-stream pressure gradient is zero and o
is unity the two boundary layers are identical.
This may be seen by comparing equation (5) for
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B = 0 with equation (8) for o = 1. The distribu-
tion in the boundary layer of the velocity, which
is £, is then the same as the distribution of the
quantity (b/B) since they obey the same differen-
tial equation with the same boundary conditions.

When o is much greater than unity, however,
the b-boundary layer is much thinner than the
velocity layer, whereas when ¢ is much smaller
than unity the b-boundary layer is much thicker
than the velocity layer.

For low values of o, therefore, an appreciable
contribution to the integral in equation (12)
comes from regions in the main-stream where,
of course, the flow is inviscid.

The integral in equation (12) can therefore
be evaluated in two parts, which will be referred
to as Parts I and II respectively.

Part I: extends over the region of the velocity
boundary layer and is evaluated by
standard procedures for numerical inte-
gration; this part is important for large
values of o.

Part IT: which extends over regions of main-
stream flow, can be expressed in closed
form and so is readily evaluated using
standard mathematical tables; this part
is important for small values of ¢.

For intermediate values of o an appreciable
contribution to the integral comes from both
parts.

For main-stream flow the stream function f
takes on a simple form which is obtained as
follows.

In the main-stream (df /d4) = 1 so that fmust
be a linear function of ». If the displacement
thickness defined in terms of the “similar”
distance 7 is given by:

x ® df
6, = 1— Z)dn,
! jo( d"l) K

on integrating this formally it is found that for
large values of 5 the stream function takes the
form:

(13)

f=0+f—8). (14)

When the fluid density is uniform the difference
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in the values of the stream-function at two points
in any fluid stream can be regarded as a measure
of the amount of fluid which crosses a line
joining the two points. Equation (14) conforms
with this interpretation since f has the value f,
at the interface where = 0 and the amount of
fluid flowing across the line joining the interface
and the point % is proportional to (y — 87), since
8] measures the thickness of the velocity layer
(i.e. 8] is the distance through which the main-
stream has been displaced by the presence of the
boundary layer).

In the integral of equation (12), therefore, let
Part I be integrated over the range 0 <X n <{ d
and Part II over the range d < n < oo. If the
value of d is large enough for equation (14) to be
valid at that point the expression for (B/b,) may
be written accurately as:

(&)L~ (e[
) e ]

o 2 o
e 3[r@] —o[rel a9
where f(d), the value of fat 4 = d, is:
f@d) =+ fo— 8. (16)

In equation (15) the first term on the right-hand
side is Part I, and the second term Part II. In
Part II the sign preceding the error function
should be opposite to that of f(d). In practice,
however, f(d) is almost always positive so that
this sign is generally negative; the alternative
sign is included so that the formula may retain
its general form.

The values of (by/B) to be given later were
obtained using equation (15). Use of this
formula is reasonably straightforward and
accurate; methods of doing so will now be
described.

3.2. Integration using a desk calculator

To apply this method solutions to the velocity
equation are needed in the form of values of the
stream function f at regular intervals in n. Many
such solutions are given in the literature.

H. L. EVANS

Starting from such a table the first step is to
construct a table of the function [j fdn at
regular intervals in « up to a value where equa-
tion (14) holds accurately; this point is readily
located from the values of f and f,. This table
has to be obtained only once, of course, as it can
then be used to evaluate (bg/B) for any value of o.

It should be noted that the displacement
thickness 83, although by definition a quantity
which is obtained by integrating throughout the
velocity boundary layer, can be obtained from
the value of f at large n without the need for
such integration. Using this and the known
values of B, f, and f{, the other functions
associated with the velocity layer, which were
discussed in Papers | and 2, can also be evaluated.
This procedure has proved to be particularly
useful for calculations with a computer; the
formulaec which are used are given in the
Appendix.

The table of [y fdy is obtained in the fol-
lowing way. The stream function f is first
expanded as a Maclaurin series in terms of its
gradients at » = 0, the higher derivations of f
needed for this being obtained by successive
differentiation of equation (5). For small values
of 7 values of [ fdn can be obtained directly
from this series although the accuracy decreases
with increasing 7. At some value of », where it is
judged that this expansion is becoming too
inaccurate, the method is changed to a step by
step application of Simpson’s rule using the
tabulated values of f, More accurate integration
formulae than Simpson’s rule can obviously be
used if rapid means of computation are available.

Having obtained values of [ fdn all the
functions required for evaluating Part II of
equation (15) are known.

Part T is evaluated numerically by again
applying Simpson’s rule in an obvious manner
using the table of values of [, fds. When mass
transfer is zero or inwards and o is large the
h-boundary layer is confined to low values of 7.
To obtain high accuracy therefore a small
interval in n must be used.

On the other hand, where mass transfer is
outwards and o is large the integrand occurring
in Part [ starts from the value unity at the wall,
increases to a maximum within the boundary
layer and then decreases to a very low value as
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the main-stream is approached. Since the
gradient of fj fdn with respect to the co-
ordinate = is f it may readily be shown that this
maximum occurs at the point where f is zero.
Most of the contribution to the integral therefore
comes from regions within the boundary layer
but not near the wall. It would therefore be
surprising if an expansion in terms of wall
gradients gave high accuracy, although expansion
about the point where f is zero should be
possible. This will not be considered further
in the present paper.

3.3. Integration by a computer

The method for evaluating (by/B) by a com-
puter differed in many respects from that just
described but since the procedure adopted was
fairly conventional only a brief outline will be
given here.

The computer programme was designed to be
as general as possible so that values of (by/B)
could be obtained for any suitable values of the
three parameters 8, f, and o. The only data
required from solutions to the velocity equation
were corresponding values of f;, f, and §;. In
the calculations for the case B = 0 these quanti-
ties were taken from the literature.

For most of the calculations an interval of 0-1
in the independent variable n» was used. At high
suction rates, namely for large positive values of
fs the velocity layer is very thin so the interval
was reduced to 0-05 for those cases.

At each step in the integration procedure the
velocity equation was solved using a fourth order
Runge-Kutta process and the functions f, 17,
S [s fdgand [§ exp —{o; [ fdn} dn were
evaluated. For any particular solution to the
velocity equation the computer dealt with about
40 values of o simultaneously and o;, with
i=1,2,3..., signifies this.

At every sixth step Part I and Part Il of
(B/by) occurring in equation (15) were evaluated
and summed. This sum is an estimate of (B/b;)
up to that value of %. This was compared w;th
the value obtained six steps previously. If the
modulus of the difference between these two
values was less than or equal to 5 X 1075 of the
last value obtained the integration was stopped
for that value of ¢. The programme continued
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until (B/b;) had been evaluated for all values
of o.

It is now realized, of course, that such a
testing procedure was not necessary since the
integration could have continued up to the value
% = d and stopped there for all values of ¢. The
method just described was used because the
form of Part 1l of the integral in equation (15)
was not known when the programme was
first devised.

3.4. Asymptotic formula for high o when f, is large
and positive

In Paper 3a, Evans [4], which was concerned
with the case when no mass flows through the
interface, asymptotic series in inverse powers of
o were given from which the wall gradient
(by/B) could be evaluated accurately for any
value of ¢ greater than 0-5. An expansion of the
same type will now be derived for large positive
/o 1t has not been possible to do so for negative
fo because of the behaviour of the integrand ; this
was discussed at the end of section 3.2.

The expansion is obtained in terms of the wall
gradients of the stream function f. The wall
gradient (b,/B) relating to the b-boundary layer
is regarded as a single entity as expressed in
equation (12) and not in two parts as given in
equation (15). The accuracy of the expansion
improves when each of the parameters o and f,
increases.

When f, is large and positive and o is large, the
driving force for mass transfer, denoted by B,
approaches —1 from above. No physical
meaning can be attached to values of B beyond
— 1. If then the quantity (1 + B)can be evaluated
to a certain accuracy for known values of 8, f,
and f,’, the functions B and (by/B) which are
calculated from these, will be known to an even
higher percentage accuracy. The expansion
obtained below expresses (1 + B) as a series in
inverse powers of o.

Expanding the stream function f in terms of
wall gradients the integral [j fdn takes the
form:

f;r 3 ffl' 0 5

j:fd’?:fu’? """" BT
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This is now substituted into equation (12) and
the integration variable changed from 7 to ¢
where:

¢ =ofon. (18)
Using the relationship:
o fo
B=— . 19
(by18) 1>

equation (12) yields the expression:
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By expanding the second exponential in the
integral of equation (20) in powers of ¢ and
using the relationship:

“ePgrdy =p! (22)
0 Pt dg

which holds for any integral value of p, an
expansion is obtained for (1 + B). On collecting
terms in the same inverse powers of ¢ this
expansion becomes:

a, ay; ,
. U+B)=S+2 4% @)
o« Y‘ (24 s (e
—B =\ eFexp—< > A, ¢ dg (20) . -
0 Ly Using the abbreviations:
q = 3 1y
. . . . f
in which the coefficients 4, are given by the ¢ 70 (24)
3
general formula: o
p f (-1 B
Ay =" . (21 ¢y (25)
q-. (Uf ) 0
A the first eight coefficients in this expansion are:
where f(“-9 denotes the (7 — 1)th derivative of £ p
fwith respect to » when evaluated at y = dy = ¢ (26)
Table l Values of the wall gradtent (b /
|
o = 100 342 25y2 1-54/2 07542 05y'2 02542
5 fo7 = 10-0492 4-35 164 3-66267 2-30831 1-33703 1-03077 0-739383
Bk = 0-098797 0222053 0260703 0393434 0611810 0740107 0925949
0-0001 | 0-861969(—2) 0-823657(-2)  0818854(—2)  0-808927(-2 0800763(—2)  0-797698(-2)  0-794290(—
0-0002 01357500_ 1) OI18008_1)  O117083—1h  OLIS030(—1) 0113418~  0112801-D 0112123~
0-0005 0211078(~1)  0-191406(—1)  O-188972(—1)  0-18395%(—1)  -179864(~1)  0-178340(—1)  0-176651(—
0-001 0318544(- 1) 0278467(—1)  0273542(—1)  0-263446(—1)  0255260(—1)  0252220(—1)  0-248844(—
0-002 0491721(— 1)  0-409560(—1)  0-399591(~1)  ©0-379212(—1)  0-362786(—1)  0:356717(—1)  0-350027(—
0-005 0912630(— 1) 0-698160( - 1)  0-672610(—1)  0-620743(—1)  0-579451(—1)  0-564373(—1)  0-547876(-
001 | 0151737 0107073 0101803 0012293(—1)  0-820225(—1)  0799230(—1)  0-766709( -
002 0-262281 0168678 0157771 0136087 0119333 0113377 0106992
004 0471320 0274613 0251880 0207115 0173211 0161387 0-148901
006 0675149 0371591 0336563 0267946 0216628 0198965 0-180508
008 0876936 0364350 0416717 0323693 0254745 0231256 0206911
ol 0-107768(1)  0-554669 0494176 0376309 0289548 0260232 0230055
02 | 0207609(1)  0-089656 0862717 0616249 0438226 0-379652 0320693
03 0307231(1)  0-141399(1) 0-121859(1) 0838959 0566879 0478686 0391302
04 | 0-406815(1)  0-183489(1) 0-156999(1) 0-105450(1) 0686264 0-568038 0452110
03 0-506425(1) 0-225452(1) 0-191953(1) 0-126639(1) 0-800351 0-651679 0-507066
06 0-606060(1)  0-267374(1) 0-226830(1) 0147627(1) 0911078 0731569 0-558066
07 0-705730(1)  0-309293(1) 0261679(1) 0-168500(1) 0-101954(1) 0-808828 0606200
08 0-805430(1)  0-351226(1) 0-296527(1) 0-189307(1) 0-112641(1) 0-884158 0652184
09 0:905153(1)  0-393181(1) 0-331387(1) 0-210078(1) 0-123214(1) 0-958030 0-696464
10 0-100490(2)  0-435162(1) 0-366265(1) 0-230831(1) 0-133703(1) 0-103077(1) 0739382
12 0-120443(2)  0-519199(1) 0-436087(1) 0-272330(1) 0-154509(1) 0-117377(1) 0-822041
14| 0140403(2)  0-603334(1) 0-506006(1) 0-313857(1) 0-175173(1) 0-131444(1) 0-901516
16 | 0160366(2)  0-687555(1) 0-575989(1) 0-355433(1) 0-195760(1) 0-145357(1) 0-978645
18 0180331(2)  0-771850(1) 0-646049(1) 0-397066(1) 0-216308(1) 0-159165(1) 0105399(1)
20 0:200308(2)  0-856207(1) 0-716168(1) 0-438757(1) 0-236841(1) 0-172901(1) 0-112795(1)
25 0250280(2)  0-106732(2) 0-891776(1) 0-533219(1) 0-288193(1) 0-207067(1) 0-130845(1)
30 i 0-300249(2) 0-127867(2) 0-106766(2) 0-647966(1) 0-339649(1) 0-241127(1) 0-148475(1)
35| 0350222(2)  0-149018(2) 0-124372(2) 0-752938(1) 0-391244(1) 0-275180(1) 0-165841(1)
0 0-400201(2)  0-170180(2) 0-141992(2) 0-858088(1) 0-442978(1) 0-309271(1) 0-183038(1)
45 0450182(2)  0-191352(2) 0159620(2) 0963379(1) 0-494842(1) 0-343423(1) 0-200123(1)
50 0-500167(2)  0-212530(2) 0-177256(2) 0-106879(2) 0-546824(1) 0-377643(1) 0-217136(1)
60 0-600143(2)  0-254900(2) 0212545(2) 0-127985(2) 0-651087(1) 0-246295(1) 0-251044(1)
70 | 0700125(2)  0-297285(2) 0247850(2) 0-149115(2) 0-755676(1) 0-515211(1) 0-284894(1)
80 0800112(2)  0-339673(2) 0283166(2) 0-170262(2) 0-860513(1) 0-584358(1) 0-318751(1)
9:0 0-900100(2)  0-382078(2) 0-318489(2) 0191422(2) 0-065544(1) 0-653702(1) 0-352651(1)
10 0-100009(3)  0-424483(2) 0-353818(2) 0-212591(2) 0-107074(2) 0723212(1) 038661 1(1)
15 0-150006(3)  0-636547(2) 0-530513(2) 0-318516(2) 0-159816(2) 0-107245(2) 0-557442(1)
20 0200005(3)  0-848643(2) 0-707246(2) 0-424507(2) 0-212686(2) 0-142340(2) 0-729759(1)

The values glven in the table must be multlplled by the powers of ten g:ven in bracket:
Values within the region marked off by broken lines may be inaccurate (see text).
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a3 = —c —e 27 ay = —c —e + (858 4 114pB)c?
+ (1591 + 188B)ce + (732 - 76B)e?
a, = ¢ + e — 10c? (28)
— (38 100 + 68928 + 1768%)c?
— 2
a; = —¢ —e + (34 + 2B)c? + 35¢e (29) — (75528 + 96088 -+ 1328%)c%e
— 2
ag = ¢ + e — (86 - 8B)c? (43 065 + 2970B)ce
— (122 4 6B)ce — 35¢% + 280c® (30) + (190 960 + 18 480B)c*
— 5775¢3 + 200 200c%e. (33)
a; = —¢ —e + (194 + 22B)c?

+ (317 + 26B)ce + (122 + 6B)e*

— (2016 - 1688)c® — 2100c2e 3D For very large values of f; it is possible to
neglect terms which contain /¥ and higher powers
in the denominator. The remaining terms are

g = ¢ + e — (414 + 52P)¢? he der e g
{ 268)e2 then readily summed giving for (1 + B) the

— (732 4 76B)ce — (317 + 26B)e much simpler expression:

+ (9596 - 13488 -+ 208%)c?

+ (15480 + 11408)c2e (1 + B ¢ e 34)

+ 5775¢ce* — 15 400c¢* (32) ol +0) o¥l+ o)

1 function of the parameters fo and o for 8 = 0.
0142 0-0 —01y/2 —0:254/2 —0:3754/2 —0-54/2 —-064/2 |
0-574341 0-469600 0:370008 0-232624 0-132388 0:050229 0-004748 ‘ g
1-08279 1:21672 1-38498 1-73941 221109 3-10476 5-55229
0-791959(—2) 0-790224(—2) 0-788275(—2) 0-784747(—2) 0-780735(—2) 0-774178(—2) 0-758806( —2) i 0-0001
0-111662(—1) 0-111316(—1) 0-110929(—1) 0:110229(—1) 0-109436(— 1) 0-108150(— 1) 0-105155(—1) -0002
0-175503(— 1) 0-174650(— 1) 0-173697(— 1) 0-171975(—1) 0-170036(—1) 0-166922(— 1) 0-159824(—1) 0-0005
0:246567(— 1) 0-244880(—1) 0-243001(—1) 0:239619(— 1) 0-235838(—1) 0:229820(—1) 0-216426(— 1) 0-001
0-345524(—1) 0-342204(—1) 0-338521(— 1) 0:331919(—1) 0-324612(—1) 0-313151(—1) 0-288372(—1) I 0-002
0-536860(— 1) 0-528805(—1) 0:519918(— 1) 0-504188(—1) 0-487064(— 1) 0-460885(— 1) 0-407257(— 1) L' 0-005
0-745198(—1) 0-729570(— 1) 0-712471(—1) 0-682540(—1) 0:650540(— 1) 0:602897(— 1) 0-510360(— 1) I 001
0-102818 0-998168(—1) 0-965627(—1) 0-909560(— 1) 0-850970(—1) 0-7666032— 1 0-613105(— 1) l 0-02
0-140867 0-135161 0-129051 0-118728 0-108251 0-937787(—1) 0-694246(— 1) 0-04
0-168766 0-160497 0-151720 0-137095 0-122549 0103022 0-718451(—1) I 006
0-191557 0-180821 0169505 0-150852 0-132593 0-108630 0-719143(— 1) | 008
0-211164 0-198031 0184270 0-161791 0-140084 0-112130 0-707666(— 1) { 0-1
0284811 0-260351 0-235249 0-195593 0-159157 0-115446 0-588487(— 1) 02
0-338878 0-303712 0-268160 0-213326 0-164775 0-109634 0:456862(— 1) 03
0-383480 0-337956 0-292480 0:223728 0164761 0-101000 0-344045(— 1) P04
0422345 0-366675 0-311650 0-229906 0161816 0915567(—1) 0-254141(— 1) i 05
0-457308 0-391675 0:327344 0-233353 0-157202 0-821497(—1) 0-185098(— 1) i 06
0-489421 0-413909 0-340517 0-234908 0-151608 0-731757(— 1) 0-133326(— 1) 07
0-519353 0-434045 0-351770 0-235091 0-145447 0-648219(~1) 0:951733(—2) 08
0-547553 0-452504 0-361506 0-234249 0-138983 0-571669(—1) 0:674334(—2) 0-9
0-574340 0-469599 0-370010 0-232623 0-132390 0:502297(— 1) 0-474804(—2) 10
0624569 0-500533 0-384118 0-227678 0-119265 0-384281(—1) 0-231853(—2) 1-2
0-671350 0-528095 0-395254 0-221211 0-106661 0-291124(—1) 0-111454(—2) 1-4
0-715505 0-553073 0-404147 0-213798 0-948634(— 1) 0-218818(—1) 0-529480( — 3) 1-6
0757590 0-575994 0411280 020S813 _ _ _ 0-83998%(—1) _ 0-163402(— 1) 0249258(—3) | 18
0-797998 0-597234 i 0417006 0797509 0-721075(— 1) 0-121353(— D) 0-119008(— 3) 2:0
0-893408 0-644638 | 0426652 0-176388 0-534947(— 1) 0-565916(—2) 0-174046( — 4) 25
0-982946 0-685961 0-431503 0-155889 0:380732(— 1) 0-258539(—2) 0-242495(—5) 30
0-106831(1) 0-722840 1 0-433034 0-136746 0-268051(—1) 0-116374(—2) 0-349591(—6) 35
0-115055(1) 0-756303 | 0-432160 0-119268 0-187095(—1) 0-518048(—3) 0-472703(—7) 4-Q
0:123039(1) 0-787046 0429495 0-103544 0-129671(— 1) 0-228659(—3) 0-650696( — 8) 4-5
0-130831(1) 0-815561 1 0425468 0-895475(— 1) 0-893467(—2) 0:100252(—~ 3) 0-889758(—9) 50
0-145980(1) 0-867277 ‘ 0-414497 0-663457(—1) 0-418286(—2) 0-189793(—4) 0-163868(—10) 6-0
0-160700(1) 0-913470 0-400947 0-486592(— 1) 0-193029(—2) 0-353953(—5) 0:297344(-12) 70
0-175116(1) 0955414 I 0-385849 0-353998(— 1) 0-881242(—3) 0-652947(—6) 0-533743(—14) 8-0
0-189307(1) 0-993968 0-369870 0-255831(—1) 0-398992(—3) 0-119460( —6) 0:950259( - 16) 9:0
0-203330(1) 0-102974(1) [ 0-353460 0-183865(—1) 0-179467(—3) 0-217144(—7) 0:168095(—17) 10
0-272007(1) 0-117962(1) 0273194 0-332596(—2) 0-310040(—5) 0-404659( —11) 0-273508(—26) 15
0-339674(1) 0-129881(1) ' 0-204611 0-566654(—3) 0-503795(—7) 0-709825(—15) 0:418995(--35) 20
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4. VALUES OF THE WALL GRADIENT (b;/B) WHEN
THE MAIN-STREAM PRESSURE GRADIENT IS
ZERO

4.1. General discussion of Table |

Values of the wall gradient (hy/B) as a function
of the fluid property group o and the mass flow
parameter f, for the case 8 = 0 are given in
Table 1. The solutions to the velocity equation
from which these were calculated, namely
corresponding values of f,, f;, and 8], were
taken from Emmons and Leigh [6] except for
the case f; = 10 which was taken from Watson
[7]. The values of these parameters are given at
the head of the appropriate column in Table 1.

Most of the values of (h,/B) were calculated
by a computer using the method described in
section 3.3. When both ¢ and f;, were large,
however, the values given by the computer were
inaccurate because the interval in n was too
great. For the bottom left hand corner of
Table 1, therefore, the values were calculated
from the series expansion given in section 3.4.

For various other reasons, such as error in
supplying the input data, the computer also gave
incorrect values at isolated positions in other
parts of the table. These values were then
recalculated by the method described in section
3.2 using values of (7 fdy supplied by the
computer.

4.2. Accuracy of Table |

The method of computation described in
section 3.3 was designed to give values of the
wall gradient (b;/B) with an error less than
5 x 10~ of its own value. Generally, therefore,
the error in the fifth significant digit should be
small but considerable error could occur in the
sixth significant digit.

The accuracy of the results may be judged by
comparing the value of (by/B) for o == 1-0 with
the corresponding value of f' given at the top
of the table. They should be equal but generally
differ by a few units in the sixth significant digit.
The sixth place has therefore been retained in
Table 1 but it should be emphasized that no
great reliance can be placed on it. This applies
particularly to negative values of f, since even
the quantities /' and & are not known to high
accuracy there.

During the present work it was found, when
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working with a computer and using accurate
integration formulae, that very high accuracy in
wall gradients is often desirable. This was also
found by Eckert et al. [8] who, when studying the
velocity equation, required the wall gradient £y
to ten significant digits in order to obtain
solutions for the case § = 1-0, f; = —3-0. Know-
ledge of the value of the sixth significant digit
in (b,/B), although not exact, may therefore
prove useful in applying the values to obtain
other functions of the h-boundary layer.

Values for high ¢ in the bottom left-hand cor-
ner of the table were calculated by the formula
of section 3.4. For lower values of o, particularly
for ¢ approaching unity, the values obtained by
the computer were accurate. There was, how-
ever, an intermediate zone where both methods
were inaccurate to some extent. By differencing
the values and, where necessary, adjusting
them so as to give smooth, regular differences,
the error in the values given is believed to be
confined to the sixth significant digit even here.
This does not apply to the values in the first
column because, when plotting 4,/4, as a
function of (¢ydy/K) (see Fig. 3), a few of the
values obtained from this column did not form
a continuous curve with points taken from the
other columns. It is therefore suspected that some
of the values in this column are in error in the
fifth significant digit.

In the part of the table where mass flow is
outwards ( f, negative) and o > 2 there may be
some inaccuracy for the following reason. Here
the integrand in equation (12) starts from unity
at the wall, increases to a maximum and then
diminishes to a low value in the main-stream.
For large ¢ this curve reaches a very high value
and has steep gradients. In order to obtain good
accuracy with such a curve a very small interval
in n should be used, whereas the values quoted
were obtained with an interval of 0-1. No
estimate has been made of the probable error
due to this but it would be surprising if the
values of (by/B) were inaccurate by more than a
few per cent of their own values.

4.3. Comparison with earlier values

Of all the two-dimensional, laminar boundary
layer flows considered in the literature the case
when both the main-stream pressure gradient
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and the rate of mass transfer through the
interface are zero has received the greatest
attention; this is the case f; = 0 in Table 1.

In order to compare the present results for this
case with exact values given in the literature
Table 2 has been drawn up. This table contains
some values for low o not included in Table 1;
these were calculated by the method described
in section 3.2.

Table 2. Comparison with published values for

}9:09 ﬂzg

(a) Present values (b) Published values

{bo/B)
o Reference
(a) )
0-003 0-0415366 0-041537 [10]
0-006 0-057595 0057593 [10]
0-01 0072957 0072959 {10}
003 115346 0:11935 o
Q1 0-198031 0-1953 9}
o5 0-366675 0-3664 9}
y _ 0-3915 {91
06 0-391675 03917 [
: ] £0-4139 91
07 0-413909 L0-4137 [10]
) ) 04340 91
08 0434045 0-4342 i
o9 0452504 0-4525 9, 111
) 0-46960 6]

1 0-469599 0-4695 0, 11]
2 0-597234 05971 11}
7 0-913470 0-9135 [9]
10 1-02974 1-0298 91
15 1-17962 1-1796 91

The numbers in the last column give the publication in
the reference list.

From this table it may be seen that values in
the literature sometimes disagree with each other
by a few units in the fourth significant digit. The
error in the value given by Merk [9] for o = 0-1
is more serious, however, as it appears to be
1-4 per cent too low. The agreement between the
present values and those given by Sparrow and
Gregg [10] for low values of o is very good,
which confirms the formula for Part II given in
equation (15) since this Part dominates for very
low o.

This case when f = 0 and £, == 0 was also

considered in Paper 3a, where an asymptotic
formula was given for calculating (b)/B) for any
high value of o. It appears from the present
results that the formula gives an accuracy of one
unit in the fourth significant digit even when o
is as low as 0-5.

The only extensive results giving values of
{by/B) in the presence of mass transfer were those
by Mickley er al. [11], which were also for the
case B = 0. On the whole the present values
agree with their results to the same extent as for
the case of no mass transfer given in Table 2.
This does not hold, however, for large o and
high blowing rates (large negative f,). The
greatest difference occurs for f; = —0-54/2 and
o = 590, the highest blowing rate and the
largest value of o considered by the earlier
authors. Whereas they obtained for (by/B) the
value 09963 » 10-%, the present value is
10025 x 1074, a difference of 0-6 per cent. A
possible source of error in the present results
for this part of the table has been given in
section 4.2.

§. FORMULAE FOR OBTAINING OTHER FUNC-
TIONS FROM (5}/B)

It was shown in Paper 3 that many other
functions relating to the A-boundary layer can
be calculated from values of (b,/B) for known
values of the parameters 8, ¢ and f;. For ease of
reference these are quoted below but will not be
discussed; the reader is referred to other papers
in the present series for more detailed discussion
of these functions.

The right-hand sides of the following equations
are written in terms of “similar” functions.
Some of these expressions differ from the forms
used in Paper 3; this is merely so that the
quantities on the left may be evaluated directly
in terms of functions occurring in Table 1 with-
out intermediate calculation. A few of these
functions are identically zero for the particular
case B == 0 but are included to make the list
complete.

Nu 1 b,
Relz T @ = pne (Bg) (3%

A, Rel/? 2 — B2 rrpt
_; = §M,;5_)”.- {(”}é’) Y fo} (36)
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Note that the functions X, ¥, W and Z form
the basis of an approximate method of esti-
mating boundary layer thicknesses which is
most accurate for large values of o. For low o
the use of different functions would probably
result in better accuracy.

Z =

6. THE ASYMPTOTIC BEHAVIOUR OF FUNC-
TIONS IN THE 5-BOUNDARY LAYER

In this section a brief examination will be

made of the asymptotic behaviour of functions
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relating to the b-boundary layer for extreme
values of some of the parameters. The conclu-
sions arrived at will then be used in section 7 to
draw curves showing the relationships between
some of these functions.

6.1. The limiting case o —Q

On examining equation (15) it may be seen
that as o — 0 Part I tends to the value d; this, in
similar co-ordinates, is the distance from the
interface at which the flow is virtually inviscid.
At the same time, Part I tends to the value
(7/20)'* since both the factor containing the
error function and the exponential factor tend
to unity. For very small o Part I is clearly
negligible compared with this, so the following
approximations apply:

(3~ (2)"

.2
2 = 7 = 0:636620.
4 T

( )
Aso =0 {1
! 49

B

L

It is interesting to note that equation (49) applies
exactly for purely inviscid flow when ¢ = 0.

For small values of o the mass transfer rate, as
measured by the value of the parameter f, has
only a small effect on (b,/B). Referring to the
smallest value of ¢ included in Table 1, namely
o = 0-0001, for which (20/m)'/2 = 0-00797885,
the extreme values of f, considered, namely
+10 and —0-64/2, give values of (b;/B) of
0-00861969 and 0-00758806 respectively. For
smaller values of o these values of (b;/B) would
be nearer to (2o/7)% and would therefore cover
a narrower range.

6.2. The limiting case o — oo

The behaviour of boundary layer functions
for large ¢ when no mass flows through the
interface may be estimated from the asymptotic
formulae given in Paper 3a. This case will not,
therefore, be discussed here except to state that
for accelerated and slightly decelerated flows
(b,/B) is proportional to ¢*/® and for flows very
near to or at the separation point (b,/B) is
proportional to o4,

Contrary to what happens for low values of
o, the mass transfer rate has a large effect on
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(b,/B) when o is large. For positive values of f;,
for example, the driving force B is very close to
—1 as soon as f,, has a non-zero value, so that the
following approximation then applies:

1

b
o large, f, positive: (—é) =qfy  (50)

When £, is negative, on the other hand, B tends
to infinity as soon as f; is non-zero and (5,/B)
tends to zero.

Accurate numerical values of (b,/B) for
positive f, and large ¢ can be obtained from the
asymptotic formula given in section 3.4. Nega-
tive values of f, would require some modification
of the methods already described.

6.3. Intensive suction

When considering the velocity boundary
layer the case of intensive suction gives rise to the
well-known asymptotic suction profile. In an
analogous manner the b-profile can be shown to
approach the asymptotic profile:

(g) — (1 — e~oron).

Instead of using this, however, the case of
intensive suction can be examined more ac-
curately by referring to equation (34). Since f’
is almost equal to f, for sufficiently large 7,
the following relationships hold:

(51

1
1+ B)= AT (52)
b\ _ _ _afe
(B) R ey B
%Ae _,._,_HI_MW
K Ty =+ o) (54)
4, L 65

When f, is very large the last two relationships
reduce to:
vede 4y 1
K 4, O+ ©6)
which may also be obtained by evaluating the
convection thickness 4, for the asymptotic
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suction profiles relating to the velocity and the
function (b/B) respectively.

6.4. “Separation” on a flat plate
When the main-stream pressure gradient is
zero and the blowing rate reaches the value
Jo = —0-875745, the wall shear, represented in
“similar” co-ordinates by fj, becomes zero.
The velocity layer is then said to separate. This
case has been discussed by Emmons and Leigh
[6] in giving similar solutions to the velocity
equation for flow over a flat plate.
For this and all higher blowing rates the
following relationship holds:
Uc @3 -2 ?08,2

B=- 4 v

(57)
A vphysical interpretation of this is that the
momentum boundary layer thickness &, grows
with distance x at a rate which is proportional
to the blowing rate, since the group (v,8:/v),
which can be shown to be numerically equal to
f2, is a suitable measure of the blowing rate (see
Papers 1 and 2).

An analogous situation must also apply to the
b-boundary layer. In terms of equation (12) the
integral on the right-hand side becomes infinite
so that (by/B) = 0. Since by(= —a fy) is still
finite this means that B is infinite. This clearly
holds for the case o = 1-0 by direct analogy with
the velocity equation, but it must apply whatever
the value of .

The following relationships therefore hold for
all f, beyond the value f; = —0-875745:

by
B=ow (59
4, = (60)
vod
% — N (61)
4,
4, =0 (62)
ug ddi v,
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In view of these relationships and the success
obtained with the velocity equation when the
mass transfer parameter (vy8,/v) was used, it
may be an advantage, in some respects, to use the
parameter (vydy/K) instead of B{= (vyd,/K)}
for the b-boundary layer.

7. CURVES OF FUNCTIONS OF THE »-BOUNDARY
LAYER
7.1. Variation of Nusselt number with mass trans-
Ser driving force
Equation (35) shows that the wall gradient
(by/B) is a measure of the local Nusselt number
Nu. Figs. 1 and 2 show how this gradient, when
multiplied by an appropriate power of ¢, varies
with the mass transfer driving force B for

H. L. EVANS

various values of o. The ordinate contains the
power of o in order to bring closer together
curves for different values of ¢. Fig. 1 is con-
cerned with high values of ¢ and Fig. 2 with
low values.

(a) High values of o. Fig. 1 is an extension to
wider ranges in the values of the driving force
B and the Prandtl/Schmidt number o of Fig. 2
in Paper 3. The behaviour of the curves has
already received some discussion in that paper
so only a few additional remarks will be made
here.

The sections shown as broken lines for high
positive values of B indicate that the curves
have either been drawn between widely separated
points or have been extrapolated by giving them
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FiG. 1. Variation of the function ¢~/ (b;/B) with mass transfer driving force B for high values of o.
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the same shape as neighbouring curves whose
shape was known. On this scale the error brought
about by this would be very small.

For negative values of B, some lines have
been omitted for clarity. Of the values of & near
unity, for example, only curves for ¢ = 0-7 and
1-0 have been included because the curves for
other values, at least down to o = 0-5, are
virtually coincident with these.

The point indicated as o
B = 0 is given by:

(f 0

e (Po) _ 3 "~ 0479017 (64
g E 3’7!' _ ( )

= I
where I' denotes the gamma function. This
relationship has been discussed in Paper 3a.

z

o on the line

(b) Low values of o. It was shown in section
6.1 that for small values of ¢ the wall gradient
(b4/B) is proportional to ¢V/2. In Fig. 2, therefore
the ordinate is o~V%(b,/B). The ends of the
curves in this figure correspond to the extreme
values of f; included in Table 1.

The most striking feature about these curves
is their behaviour when B is positive, i.e. when
mass flows outwards through the interface. For
any fixed value of o the ordinate quantity
decreases as B increases. As the value of o
decreases, however, the curves descend more and
more rapidly. From the discussion already given
in section 6.4 each of these curves must tend to
zero on the right when the blowing rate is high
enough to cause the velocity layer to separate.
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The point shown as o = 0 is given by:
1/2 b(; 2\
o (‘B) — (W) 0797885,  (65)

7.2. Variation of the ratio 4,/4, with mass transfer

(a) Inward mass transfer. It has already been
seen in section 6.2 that for intensive inward
mass transfer the driving force B approaches —1
and the wall gradient (by/B) becomes very large.
In order to accommodate such points on Figs.
1 and 2 the co-ordinate axes must be extended

both upwards and to the left. It is not, of course,
possible to include the asymptote itself since B
is then —1 and (by/B) is infinite.

On the other hand the ratio 4,/4, and the
mass transfer parameter —(vydy/K) are always
between 0 and 1 when the mass transfer is
inwards. Fig. 3 shows the relationship between
these guantities for constant values of o. This
figure is analogous to part of Fig. 2 in Paper 2
where the ratio Hy,(= §,/8,) was plotted as a
function of the mass transfer parameter (v48,/+)
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(note that v, in the earlier paper is here denoted
by v,).

Since the ratio of the abscissa to the ordinate
for any point on these curves gives the value
of B{= (vy44/K)}, lines of constant B are
straight lines of slope 1/B passing through the
origin.

The full lines in this figure cover the range of
mass transfer included in Table 1, namely, up to
an inward mass flow rate corresponding to
fo = +10. The broken portions of these lines
represent extrapolations to the point on the
asymptote, represented by a triangle, which
satisfies equation (56). Extrapolations have not
been included for the two lowest values of o
as it was difficult to judge the shapes of the
curves over such a long distance. They are
almost, but not exactly, linear in this region.

For any point on these curves or the extra-
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polations the wall gradient (by/B) can be calcu-
lated from the formula:
(b; 4,

B) Ay {(vedo/K) + (do/A)}*
Clearly the accuracy of this diminishes as the
asymptote is approached since —(vy4,/K) and
4,/4, are then almost equal.

Two points should be noted regarding the
general shapes of these curves. Firstly, it was
noted when discussing Fig. 2 in section 7.1 that,
for the case of outward mass transfer, the
ordinate descended more and more rapidly with
increasing values of B as the value of o decreased.
This effect seems to be evident even on the
suction side in Fig. 3. Secondly, the approach
to the asymptote for intensive suction is from
below when o is small (i.e. o < 2), whereas when
o is large the approach is from above.

ol/2

(66)
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FiG. 4. Variation of the ratio (4,/4,) with (v,d,/v) when mass transfer is outwards.
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(b) Outward mass transfer. It was shown in
section 6.4 that when the velocity boundary
layer separates from the interface, B is infinite
and (by/B) is zero for all values of ¢. This point
also cannot be included in Figs. 1 and 2. Instead
of using the mass transfer parameter (vyd,/K)
along the abscissa as in Fig. 3, however, it
follows from equation {61} that the parameter
(vedsfv) would be better since the point of
separation would then be the same for all o.

The relationship between the ratio (d;/d,)
and this mass transfer parameter is shown in
Fig. 4. All the curves are seen to converge on the
point where (4,/4,) = 0, (pedy/v) = 0-766929.

Again the full lines represent the results con-
tained in Table 1 and the extensions, shown as

the separation point. For very low values of o
the curves form a wide arc to the right before
returning to cut the abscissa.

These extrapolations to the separation point
can clearly be used to extend Figs. 1 and 2 to the
right. The accuracy of this would depend
largely on the accuracy to which (d,/4,) can be
estimated since inaccuracy in the function
{(vedof Ky -+ (dy/4,) 3% occurring in equation
{66) would introduce only a small error.
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APPENDIX

The displacement and momentum boundary
layer thicknesses of the velocity layer are
usually evaluated by integrating certain quanti-
ties throughout the boundary layer. The stream
function is, however, known in the main-stream
whether solutions are taken from tables in the
literature or evaluated on a computer. The
formulae given below can be used for calculating
functions associated with the velocity layer
without the need for integration. The first two
formulae are definitions of 8] and 8} The
importance and applications of the succeeding
functions have been discussed in Papers 1 and 2
of the present series.
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