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Abstract-The wall gradient (b&/B) of the b-boundary layer is evaluated from solutions to the velocity 
equation by integration. By dividing the range of integration into two parts (a) that over the velocity 
boundary layer and (b) that for main-stream flow, a formula is derived from which this wall gradient 
can be evaluated accurately for any value of the Prandtl/Schmidt number. Methods are then given for 
doing this either with a desk calculator or on a computer. These methods are not convenient however, 
when the Prandtl/Schmidt number has a high value and there is a high rate of inward mass flow; an 
asymptotic formula is therefore derived for this case. A table of values of the wall gradient, most of 
which are new, is then given for the case of zero main-stream pressure gradient. A discussion follows 
of the asymptotic behaviour of functions of the b-boundary layer when various parameters take 

extreme values and some of these functions are plotted. 

R&sum&-Le gradient g la paroi (bA/B) de la couche limite est 6valuB, par integration, & partir des 
solutions de 1’8quation du mouvement. En divisant l’intervalle d’intkgration en deux parties: (a) celui 
qui couvre la couche limite dynamique et (b) celui relatif B l’koulement principal, on &ablit une 
formule B partir de laquelle on peut calculer avec pr&ision le gradient B la paroi, pour une valeur 
quelconque du nombre de Prandtl/Schmidt. Des m&hodes sont ensuite donnees pour effecteur ce 
calcul soit g l’aide d’une machine & calculer de bureau soit avec une calculatrice. Toutefois, ces 
m&hodes ne conviennent pas quand le nombre de Prandtl/Schmidt est bleve et lorsqu’il existe un 
transport de masse important dans la couche limite; pour ce cas, une formule asymptotique a 6tB 
Ctablie. Une table des valeurs du gradient & la paroi, dont la plupart sont nouvelles, est ensuite don&e 
quand le gradient de pression est nul dans 1’6coulement principal. Suit une discussion sur le com- 
portement asymptotique des fonctions dans la couche limite b lorsque les diffkrents parametres 

prennent des valeurs extremes; quelques unes de ces fonctions ont BtB tracBes. 

Zusammenfassung-Durch Integration von Liisungen der Geschwindigkeitsgleichung wurde der 
Wandgradient (b;/B) der b-Grenzschicht berechnet. Teilt man den Integrationsbereich (a) in den 
Bereich der Geschwindigkeitsgrenzschicht und (b) in den Bereich der Hauptstramung, so erhPlt man 
eine fiir beliebige Werte der Prandtl/Schmidtzahl giiltige Formel fir die exakten Werte des Wand- 
gradienten. Diese Berechnung ist fiir Hand- und Elektronemechner angegeben. Fiir grosse Werte der 
Prandtl/Schmidtzahl und einen grossen, nach innen durch die Granzflkhe tretenden Massenstrom ist 
diese Berechnungsmethode unbequem, deshalb wurde dafiir eine asymptotische Formel abgeleitet. 
Eine Tabelle vorwiegend neuer Werte des Wandgradienten ist fiir einen Druckgradienten Null der 
HauptstrBmung angegeben. Fiir Extremwerter einiger Parameter zeigen die Funktionen der b-Grenz- 
schicht ein asymptotisches Verhalten. Einige dieser Funktionen sind als Diagramme mitgeteilt. 

hEOT8IWiJi--rpa@IeHT (&/B) norpaHHquoro cnorr 6 Ha cTenKe nbIqncnne%fl 113 pemeanti 
J'paBHeHHR CKOpOCTIl llyTk?M er0 HHTeCpHpOBaHEIJL PaanenHB KHTerpanbI Ka nse qacTn: 

(a) II0 IIOrpaHHYHOMJ' CJIOH) I4 (6) AJIFI OCHOBHOrO IIOTOKB, IIOJIYYMM @OpMyJlJ', II3 KOTOpOti 

MOWHO TOYHO BbIYHCJIEiTb rpaAaeHT Ha CTeHKe @IR: JIKJ~LJX W4CeJI npElHnTJIH/mMHfiTa. 
TawKe B CTaTbe IIpMBOARTCR MeTOAIlKa BbI'IEiCJIeHIIR C IIOMOWbH) C9&THII-BbI9HCnH-TenbHbIX 

ME~IIIEIII. OAHaKO, BTH MeTOAbI HeIIpHrOAHhl B CJIJ'sae 6onbmHx WICe.JI ~paHATJIfi/~MH~Ta 



NOTATION 

Most of the quantities given below are 

dimensionless; where they are not the dimen- 

sions are given in brackets. 

coefficients occurring in equation (23) 
and defined in equations (26) to (33); 
coeficients occurring in equation (20) 
defined in equation (21); 
conserved fluid property in dimension- 
less form (see Paper 3 for a discussion of 
its form and meaning); 
gradient of b in the fluid at the interface ; 
see equation (10) ; 
value of b in the main-stream; it is the 
driving force for mass transfer (dis- 
cussed fully in Paper 3) ; 
constant occurring in equation (1) ; 
abbreviation for (f y/f’:) which occurs 
in equations (26) to (34); 
dimensionless distance occurring in 
equation (15); it is the value of the 
“similar” co-ordinate 7 at which the 
flow can be regarded as inviscid; 
abbreviation for (/I/‘“,) which occurs in 
equations (26) to (34); 
dimensionless stream function in “simi- 
lar” co-ordinates defined in equation 

(4); 
value off at the interface; see equation 
(7) ; 

fi’,fr), values of the derivatives of fat the 

K 

n, 
N% 

interface; 
function which measures the rate of 
growth with distance x of the momentum 
boundary layer thickness 6,; see equa- 
tion (57) and Appendix; 
diffusion constant; the thermal diffusi- 
vity of the fluid for heat transfer, the 
diffusion coefficient of a mass com- 
ponent in the fluid mixture for mass 
transfer (ft2/h); 
constant occurring in equation (1); ___ . 
Nusselt number in terms of the Length x; 

number occurring in equation 
specifying terms in the expanded 
of equation (20) ; 
number occurring in equation 
specifying terms in equation (20); 

(22) 
form 

(21) 

local Keynolds number (=uGx/v); 
velocity component parallel to the inter- 
face (ft/h) ; 
value of u in the main-stream (ftfh); 
velocity component normal to the inter- 
face (ft/h); 
value of u at the interface (ft/h); 
curvature parameter in terms of the 
convection thickness d,; equation (46); 
distance parallel to the interface 
measured from the start of the boundary 
layer (ft) ; 
curvature parameter in terms of the 
conduction thickness d,; equation (44); 
distance measured perpendicular to the 
interface (ft); 
function which is a measure of the rate 
of growth with distance x of the con- 
duction thickness d,; equation (45); 
function which is a measure of the rate 
of growth with distance x of the con- 
vection thickness il,; equation (47). 

Greek symbols 
/3, parameter occurring in the velocity 

equation; it is a measure of the main- 
stream pressure gradient ; equation (2) ; 

YY Auid property called the “exchange 
coefficient” given by Kp, (Ib/ft h); 

a:, displacement boundary layer thickness 
in “similar” co-ordinates; defined by 
equation (13), (ft); 

6 2, momentum boundary layer thickness, 

s 43 shear boundary layer thickness, 
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convection boundary layer thickness, 

conduction boundary layer thickness, 
= ~/(~~lQ&lt (ft) ; 
“similar” dimensionless length co- 
ordinate which gives the distance of a 
point from the interface, equation (3); 
dynamic viscosity of fluid (lb/ft h); 
kinematic viscosity of fluid (= p/p), 
(ft2/h) ; 
density of fluid (lb~ft3); 
Prandtl or Schmidt number (== v/K); 
integration variable used in section 3.4, 
defined in equation (18); 
stream function (ft2/h). 

Subscripts 
G, denotes fluid state in the main-stream; 

;’ 
denotes terms in equation (23); 
denotes fluid state adjacent to the inter- 
face ; 

43 denotes terms in equation (20). 

1. INTRODUCTION 

1.1. General remarks 
IN EARLIER papers of the present series it was 
shown that when the fluid properties are 
uniform the prediction of mass transfer rates 
through laminar boundary layers can be reduced 
to the solution of two simultaneous partial 
differential equations. The velocity equation 
governs the distribution in the boundary layer of 
momentum, shear and other purely mechanical 
quantities; this was considered in Paper 1, 
Spalding [1] and Paper 2, Spalding and Evans 
[Z]. The b-equation governs the distribution of 
other conserved fluid properties; this was dis- 
cussed in Paper 3, Spalding and Evans [3]. 

It was also shown that for “similar” flows 
these equations reduce to ordinary differential 
equations which can be solved exactly. These 
“similar” solutions are important not only in 
their application to strictly “similar” flows but 
also serve as a basis for more general, if approxi- 
mate, methods applicable to problems involving 
non-similar flows. 

An important quantity occurring in the 
b-equation is the “wall gradient” (bb/B), where 

bk is the gradient of the conserved fluid property 
b with respect to the “similar” dimensionless 
distance T, the suffix denoting the value at 
7 = 0, and B is the value of b in the main- 
stream. In principle this wall gradient can be 
evaluated by integration once the distribution of 
the stream function is known. 

.In Paper 3 it was shown that comparatively 
few exact values of the wall gradient could be 
found in the literature. Most of them related 
to the case of zero main-stream pressure 
gradient and were confined to a fairly narrow 
range near unity in the Prandtl~Schmidt number 
u. Paper 3 also contained tables from which 
approximate values of (bb/B) could be obtained 
for wide ranges in the main-stream pressure 
gradient and Prandtl/Schmidt number. 

Paper 3a, Evans [4], was concerned with the 
case of zero mass transfer. Series were given 
from which the wall gradient could be evaluated 
accurately for wide ranges in the main-stream 
pressure gradient and for any value greater than 
O-5 of the PrandtI/Schmidt number u. 

1.2. Outline of the present paper 
The main aims of the present paper are to 

give methods of evaluating the wall gradient 
(bb/B) accurately and to present a table of values 
for the case of zero main-stream pressure 
gradient. This table covers wide ranges in the 
fluid Prandtl/Schmidt number as well as the 
mass transfer rate. Formulae and methods of 
calculation are given in a general form which 
hold even when the main-stream pressure 
gradient is not zero, but results for non-zero 
values of this parameter are to be given in later 
papers. 

After a brief statement of the mathematical 
problem which has to be solved, an expression 
is derived for the reciprocal of the wall gradient 
which greatly simplifies the problem of numerical 
evaluation. This can be used for any values of the 
parameters specifying the Prandtl/Schmidt num- 
ber, main-stream pressure gradient or mass 
transfer rate. 

Values of the wall gradient have been obtained 
in three ways. When solutions to the velocity 
equation are known, ~lculations with a desk 
calculator can give high accuracy; the method 
used is described in section 3.2. Most of the 
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results were, however, obtained on a computer 
the method for which is outlined in section 3.3. 
But, when the Prandtl/Schmidt number has a 
high value and the suction rate is high, neither 
of these methods is suitable so an asymptotic 
formula which gives high accuracy under these 
conditions is derived in section 3.4. 

The results obtained for zero main-stream 
pressure gradient are discussed in section 4 and 
formulae are given in section 5 from which 
other functions of the b-boundary layer may 
be calculated. Since these functions are readily 
evaluated from the wall gradient and the known 
values of the various parameters, they are not 
tabulated in the present paper. 

In section 6 an examination is made of 
the asymptotic behaviour of functions in the 
b-boundary layer for extreme values of the 
parameters and in section 7 some of these 
functions are plotted and discussed. 

2. STATEMENT OF THE MATHEMATICAL 

PROBLEM 

The forms which the two-dimensional, 
laminar boundary layer equations take for 
“similar” flows have been fully discussed in 
earlier papers in the present series. For purposes 
of reference and in order to explain the ter- 
minology used, the equations are stated briefly 
in the present section. 

2.1. The “similar” velocity equation 
In Paper 1, Spalding [I], it was shown that for 

“similar” solutions to the two-dimensional, 
laminar boundary layer equations with constant 
fluid properties, the main-stream velocity uo 
obeys the equation : 

dUG 
z=cu”, 

where C and n are constants and x is the distance 
measured parallel to the wall. 

A parameter /3 is obtained from the constant n 
by the relationship : 

“=+q . 

and a dimensionless distance co-ordinate 7 is 
defined by: 

(3) 

where y is the distance perpendicular to the wall 
and v is the kinematic viscosity. If now a 
dimensionless stream function f is related to the 
stream function 4 by: 

(4) 

velocities in the boundary layer are governed 
by the ordinary differential equation: 

f 1” j-J+” + p(1 -f’2) _ 0 (5) 

with the boundary conditions: 

7=0, f=fo, f’-0 ‘i 

q-fco, J”il. J 
(6) 

In equations (5) and (6) the primes denote 
differentiation with respect to the independent 
variable 77 and the quantity .fO in equation (6), 
which is a constant for “similar” flows, is related 
to the velocity G’~ with which mass flows through 
the wall by: 

2.2. The “similar” b-equation 
This equation is a generalization of the energy 

equation familiar in the study of heat transfer. 
It has been fully discussed by Spalding [S] and 
“similar” solutions to it were considered in 
Paper 3. In the latter paper it was shown that 
for a certain restricted class of “similar” solu- 
tions a conserved fluid property, represented in 
suitable dimensionless form by the quantity b, 
satisfies the ordinary differential equation: 

h” + of b’ L 0 (8) 

with boundary conditions: 

7) ~-0, b --0 

7-f a, li h-+B ’ (9) 

In addition to these boundary conditions the 
relationship: 

b; = -uf;, (10) \’ -2) 
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which relates the b-profile to the~pro~le, is also ,i3 = 0 with equation (8) for (T = 1. The distribu- 
satisfied. tion in the boundary layer of the velocity, which 

In these equations the primes again denote isf’, is then the same as the distribution of the 
differentiation with respect to ?, f andf, are the quantity (b/B) since they obey the same differen- 
stream functions occurring in the velocity tial equation with the same boundary conditions. 
equation, u is the Prandtl/Schmidt number and When 0 is much greater than unity, however, 
B is the value of b in the main-stream. the b-boundary layer is much thinner than the 

From equation (8) it may readily be shown velocity layer, whereas when u is much smaller 
that the distribution of b is given by: than unity the b-boundary layer is much thicker 

than the velocity layer. 
For low values of C, therefore, an appreciable 

contribution to the integral in equation (12) 
comes from regions in the main-stream where, 

and the reciprocal of the wall gradient is given of course, the flow is inviscid. 
by: The integral in equation (12) can therefore 

be evaluated in two parts, which will be referred 
to as Parts I and II respectively. 

The present paper is concerned with methods Part I: extends over the region of the velocity 

of evaluating the right-hand side of equation (12) boundary layer and is evaluated by 

for any value of u, given solutions to equation standard procedures for numerical inte- 

(5) with boundary conditions (6). Since such gration; this part is important for large 

solutions are given for fixed values of fo, and in values of t7. 

view of the relationship given in equation (lo), 
the problem amounts to evaluating the mass Part II: which extends over regions of main- 

transfer driving force B, given the fluid property stream flow, can be expressed in closed 

u and the velocity, specified by f& at which mass form and so is readily evaluated using 

flows through the interface. The main-stream standard mathemati~l tables; this part 

pressure gradient, of course, also affects the is important for small values of C. 

distribution off with 7 and thereby the value of 
B obtained using equations (12) and (10). For intermediate values of CT an appreciable 

The table of values of (hi/B) to be given later contribution to the integral comes from both 

apply to the case when the parameter 6 occurring parts. 

in equation (5) is zero. For main-stream flow the stream function f 

As well as evaluating the right-hand side of takes on a simple form which is obtained as 

equation (12) the method of calculation could follows. 

also be adapted to obtaining the distribution of In the main-stream (cffjd?) = 1 so thatfmust 

b with 9 as given in equation (I 1) but this is not be a linear function of q. If the displacement 

done in the present paper. thickness defined in terms of the “similar” 
distance 71 is given by: 

3. EVALUATING THE INTEGRAL 

3.1. Formula for numerical integration 
It is known that the relative thicknesses of the 

velocity boundary layer and the b-boundary on integrating this formally it is found that for 
layer depend on the value of the Prandtl/ large values of r] the stream function takes the 
Schmidt number u. For the unique case when form : 

the main-stream pressure gradient is zero and u 
is unity the two boundary layers are identical. f= +I +“cl - ST>. (14) 

This may be seen by comparing equation (5) for When the fluid density is uniform the difference 
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in the values of the stream-function at two points 
in any fluid stream can be regarded as a measure 
of the amount of fluid which crosses a line 
joining the two points. Equation (14) conforms 
with this inte~retation since f has the value f0 
at the interface where n = 0 and the amount of 
fluid flowing across the line joining the interface 
and the point 7 is proportional to (7 -- ST), since 
8: measures the thickness of the velocity layer 
(i.e. 8: is the distance through which the main- 
stream has been di~~~uced by the presence of the 
boundary layer). 

In the integral of equation (12), therefore, let 
Part I be integrated over the range 0 < 7 & d 
and Part II over the range d :< 7 :s; CO. If the 
value of d is large enough for equation (14) to be 
valid at that point the expression for (B/b:) may 
be written accurately as: 

wheref(d), the value offat 7 = d, is: 

f(d) = (d +fr, - 8;). (16) 

In equation (15) the first term on the right-hand 
side is Part I, and the second term Part II. In 
Part II the sign preceding the error function 
should be opposite to that off(d). In practice, 
however, f(d) is almost always positive so that 
this sign is generally negative; the alternative 
sign is included so that the formula may retain 
its general form. 

The values of (hi/B) to be given later were 
obtained using equation (15). Use of this 
formula is reasonably straightforward and 
accurate; methods of doing so will now be 
described. 

3.2. lntegration using a desk calculator 
To apply this method solutions to the velocity 

equation are needed in the form of values of the 
stream functjon~at regular intervals in 7. Many 
such solutions are given in the literature. 

Starting from such a table the first step is to 
construct a table of the function Jz f dy at 
regular intervals in n up to a value where equa- 
tion (14) holds accurately; this point is readily 
located from the values off and fO. This table 
has to be obtained only once, of course, as it can 
then be used to evaluate (&/B) for any value of G. 

It should be noted that the displacement 
thickness Si, although by definition a quantity 
which is obtained by integrating throughout the 
velocity boundary layer, can be obtained from 
the value off at large 7 without the need for 
such integration. Using this and the known 
values of ,$ Jb and .f‘y, the other functions 
associated with the velocity layer, which were 
discussed in Papers I and 2, can also be evaluated. 
This procedure has proved to be particularly 
useful for calcufations with a computer; the 
formulae which are used are given in the 
Appendix. 

The table of Ji f d7 is obtained in the fol- 
lowing way. The stream function f is first 
expanded as a Maclaurin series in terms of its 
gradients at TJ =_- 0, the higher derivations off 
needed for this being obtained by successive 
differentiation of equation (5). For small values 
of 7 values of Jz f dv can be obtained directly 
from this series although the accuracy decreases 
with increasing 7. At some value of 7, where it is 
judged that this expansion is becoming too 
inaccurate, the method is changed to a step by 
step application of Simpson’s rule using the 
tabulated values off. More accurate integration 
formulae than Simpson’s rule can obviously be 
used if rapid means of computation are available. 

l-laving obtained values of f:: fd? all the 
functions required for evaluating Part 11 of 
equation (15) are known. 

Part I is evaluated numerically by again 
applying Simpson’s rule in an obvious manner 
using the table of values of Jn ,fdT. When mass 
transfer is zero or inwards and (T is large the 
b-boundary layer is confined to low values of 7. 
To obtain high accuracy therefore a small 
interval in 7 must be used. 

On the other hand, where mass transfer is 
outwards and cr is large the integrand occurring 
in Part I starts from the value unity at the wall, 
increases to a maximum within the boundary 
layer and then decreases to a very low value as 
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the main-stream is approached. Since the 
gradient of jif dT with respect to the co- 
ordinate 71 is f it may readily be shown that this 
maximum occurs at the point where f is zero. 
Most of the contribution to the integral therefore 
comes from regions within the boundary layer 
but not near the wall. It would therefore be 
su~rising if an expansion in terms of wall 
gradients gave high accuracy, although expansion 
about the point where f is zero should be 
possible. This will not be considered further 
in the present paper. 

3.3. Integration by a computer 
The method for evaluating (b$‘B) by a com- 

puter differed in many respects from that just 
described but since the procedure adopted was 
fairly conventional only a brief outline will be 
given here. 

The computer pro~amme was designed to be 
as general as possible so that values of (b~~~~ 
could be obtained for any suitable values of the 
three parameters 8, .fO and a. The only data 
required from solutions to the velocity equation 
were corresponding values of fop f:, and 8:. In 
the calculations for the case /3 = 0 these quanti- 
ties were taken from the literature. 

For most of the calculations an interval of 0.1 
in the independent variable 9 was used. At high 
suction rates, namely for large positive values of 
f@, the velocity layer is very thin so the interval 
was reduced to @OS for those cases. 

At each step in the integration procedure the 
velocity equation was solved using a fourth order 
Runge-Kutta process and the functions f; f’, 
frft fi f d? and J;I exp - (CQ J;I f dT) dq were 
evaluated. For any particular solution to the 
velocity equation the computer dealt with about 
40 values of u simultaneously and oi, with 
i = 1, 2, 3 . . , , signifies this. 

At every sixth step Part I and Part II of 
~~/b~~ occurring in equation (15) were evaluated 
and summed. This sum is an estimate of ~~/b~~ 
up to that value of 7. This was compared with 
the value obtained six steps previously. If the 
modulus of the difference between these two 
values was less than or equal to 5 x 1O--5 of the 
last value obtained the integration was stopped 
for that value of CT. The programme continued 

until (B/bJ had been evaluated for ail values 
of 0‘. 

It is now realized, of course, that such a 
testing procedure was not necessary since the 
integration could have continued up to the value 
ri = d and stopped there for all values of tr. The 
method just described was used because the 
form of Part II of the integral in equation (15) 
was not known when the pro~amme was 
first devised. 

3.4. As~~pt~tic~r~ula.for high u wlzen,fo is large 
ami positive 

In Paper 3a, Evans [4], which was concerned 
with the case when no mass flows through the 
interface, asymptotic series in inverse powers of 
u were given from which the wall gradient 
(b~/~~ could be evaluated accurately for any 
value of u greater than 0.5, An expansion of the 
same type will now be derived for large positive 
fo. It has not been possible to do so for negative 
f0 because of the behaviour of the integrand; this 
was discussed at the end of section 3.2. 

The expansion is obtained in terms of the wall 
gradients of the stream function f. The wall 
gradient (bG/B) relating to the b-boundary layer 
is regarded as a single entity as expressed in 
equation (12) and not in two parts as given in 
equation (15). The accuracy of the expansion 
improves when each of the parameters a andf, 
increases. 

When,fo is large and positive and G is large, the 
driving force for mass transfer, denoted by B, 
approaches -1 from above. No physical 
meaning can be attached to values of B beyond 
- 1. If then the quantity (1 + B) can be evaluated 
to a certain accuracy for known values of 13, f0 
and f;‘, the functions B and (6618) which are 
calculated from these, will be known to an even 
higher percentage accuracy. The expansion 
obtained below expresses (1 + B) as a series in 
inverse powers of a. 

Expanding the stream function f in terms of 
wall gradients the integral &! fdq takes the 
form : 
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This is now substituted into equation (12) and 
the integration variable changed from 77 to v 
where : 

p = U,f” 7. 

Using the relationship: 

By expanding the second exponential in the 
integral of equation (20) in powers of r/l and 
using the relationship : 

(22) 
which holds for any integral value of p, an 
expansion is obtained for (1 + B). On collecting 
terms in the same inverse powers of u this 
expansion becomes : 

u.fo 
B = - (hi/B) (19) 

equation (12) yields the expression : 

s 

OTJ 

-B= 

0 

e-Vexp - {zA,p’]dr/ (20) 

q = 3 
in which the coefficients A, are given by the 
general formula : 

(1 + B) = ;; + $ + -; + . . . (23) 

Using the abbreviations : 

(24) 

(25) A = gYl(“-‘) 1 
* 4! (fJf0)” 

(21) 

the first eight coefficients in this expansion are: 

a2 = c (26) 

wheref,(“-l) denotes the (4 - 1)th derivative of 
fwith respect to 7 when evaluated at 17 = 0. 

Table 1. Values uj’ the wall gradient (bJB: 

2.52. 2 
3.66267 
0.260703 

1 

’ f,, IO.0 3% 2 
Li i /"" ~= IO.0492 4.35164 

,TT: 0.098797 0.222053 

15d2 0.75t.2 
2.30831 I.33703 
0.393434 0611810 

0.5, 2 0.25>:2 
I.03077 0.739383 
0.740107 0.925949 

~~__ 

0.236841(13 

0.800763(-2) 
0~113418(- I) 
0.179864( I) 

0~288193(1) 

0.255260(-I) 

0,339649(l) 

0.362786(--l) 
0,579451(Fl) 
0,829225(-l) 

0.391244(l) 

0.119334 

0,442978(l) 

0~173211 
0.216628 
0.254745 

0.494842(l) 

0.289548 

0,546824(l) 

0.43X226 
0.566879 
0.686264 

0.651087(l) 

@So0351 
0.911078 

0.755676(l) 

0~101954(1) 
0~112641(1) 

0.860513(l) 

0.123214(l) 
0.133703(l) 

0.965544(l) 

0~154509(1) 
0~175173(1) 

0.107074(2) 

0.195760(l) 
0~216308(1~ 

0.159816(2) 
0.212686(Z) 

_ 
-0.797698(--2) 
0~112807(~1) 
0~178340(~1) 
0.25222O(G I) 
0.356717(- I) 
0.564373(- 1) 
0.79923O(Gl) 
0.113377 
0.161387 
0.198965 
0.231256 
0.260232 
0.379652 
0.478686 
0.568038 
0.651679 
0.731569 
0.808828 
0.884158 
n.9sgo30 
0~103077(1) 
0~117377(1) 
0.131444(l) 
0.145357(l) 
0.159165(l) 
0.1729Olilj 
0.207067(l) 
0.241127(l) 
n.275180(11 

0.861969(-Z) 
0.125740(~1) 
0.211078(--1) 
0.318544( I) 
0.491721(-l) 
0.912630(~1) 
0.151737 
0.262281 
0.471320 
0.675149 
0.876936 
0,107768(l) 
0.207609(l) 
0,307231(i) 
0.406815(l) 
@506425(l) 
0~606060(1) 
0.705730(l) 
0.805430(i) 
0.905153(l) 
0.100490(2) 
0.120443(2) 
0.140403(Z) 
0.160366(2) 
0.180331(2) 

0.823657( 2) 
0~118008(~~ I) 
0~191406(~1) 
0.278467(-l) 
0.40956OCG I) 

0.818854(-Z) 
0~117042(~l) 
0.188972(-I) 
@273542(--l) 
0.399591(-l) 
0.67261Of-I) 

0,438757(l) 

0,808927( -2) 
0~115050(-1) 
0.183959(~~1) 

@543219(l) 

0,263446(-l) 

0,647966(l) 

0~379212(~~1) 
0,620743(- 1) 
0.912293(-l) 

0,752938(l) 

0.136087 

0,858088(l) 

0.207115 
0.267946 

0,963379(l) 

0.323693 
0.376309 

0,106879(2) 

0.616249 
0.838959 

0.12798X2) 

0~10545o(r, 
0.126639(l) 
0,147627(l) 

0~149115(2) 

0~168500(1) 
0.189307(l) 

0.170262(2) 

0~210078(1) 
0.230831(l) 

0.191422(2) 

0.272330(l) 
0.313857(l) 

0.212591(Z) 

0,355433(l) 
0.397066(l) 

0.318516(2) 
0,424507(Z) 

@794290(-m 
0.112123(- 
0.176651(- 
0.248844- 
0.350027(-- 
0.547876(~~ 
0.766709C 
0.106992‘ 
0~148901 
0.180508 
0.206911 
0.230055 
0.320693 
0.391302 
0.452110 
(I.507066 
0.558066 
0.606209 
0.652184 
0.696464 
W739382 
0.822041 
0.901516 
0.978645 
0.105399(l) 

osQo1 
oaOO2 
oaxl5 
0.001 
0.002 
0.005 
0.01 
0.02 
0.04 
0.06 
0.08 
0.1 
@2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
I.0 
1.2 
I.4 
I.6 
1.8 
2.0 
2.5 
3.0 
3.5 
4.0 
4.5 
5.0 
6.0 
7.0 
8.0 
9.0 

t: 
20 

0.698160( -I) 
0.1n7079 
0.168678 __ ._.... 
W274613 0.251880 
0.371591 0.336563 
0.464359 0.416717 
0.554669 0.494176 
0.9896% rl.862717 
0.141399(l) 0.121859(l) 
0.183489(l) @156999(l) 
0.225452(l) 0.191953(l) 
0,267374(l) @226830(l) 
0.309293(l) 0.261679(l) 

0.7718soiij 

0.351226(l) 

0.X56207(11 

0.393181(l) 
0,435162(l) 
0.519199(l) 
0.603334(l) 
0.687555(l) 

0.646049(l) 
0.716168(l) 

0.296527(l) 

0,891776(l) 

0.331387(l) 

0.106766(2) 
0.124372(2) 
0.141992(2) 

0,366265(l) 

0.159620(2) 
0.177256(2) 

0.436087(l) 

0.212545(2) 

0.506006(l) 

0.247850(Z) 
0.283166(Z) 

0.575989(l) 

@318489(Z) 
0.353818(Z) 
0.530513(2) 
0,707246(Z) 

O.l12795(1) 
0.130845(l) 
0.148475(l) 
0.165841(l) 
0~183038(1) 
0~200123(1) 
0.217136(l) 
0.251044(l) 
O-284894(1) 
0.318751(l) 
0.352651(l) 
0.386611(l) 
0.557442(l) 
0,729759(l) 

~~ ~. .~, 
0.106732(2) 
0.127867(2) 
0~149018(2) 
0~170180(2) 
0.191352(2) 
0.212530(Z) 
0.254900(Z) 
0,297285(Z) 
0,33967X(21 
0.382078(Z) 
0,424483(Z) 
0.636547(Z) 
0,848643(Z) 

0.723212(lj 
0.107249(2) 
0.142340(2) 

The values given in the table must be multiplied by the powers often given in brackets. 
Values within the region marked off by broken lines may be inaccurate (see text). 
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a3 = -c -e (27) 

a4 = c + e - IO? (28) 

a5 = -c -e + (34 + 2j3)c2 + 35ce (29) 

a6 = c + e - (86 + 8/3)cz 

- (122 f 6/3)ce - 35e2 + 280~” (30) 

a7 = --c -e + (194 + 228)~~ 

+ (317 + 26/3)ce + (122 + 6/3)e2 

~ (2016 + 168fl)c3 - 2100c2e (31) 

a, = c + e - (414 + 52p)cz 

- (732 + 76fi)ce - (317 + 26p)e2 

+ (9596 + 13488 + 20p2)c3 

+ (15 480 + l140/3)c2e 

+ 5775ce2 - 15 400~~ (32) 

I function of the parameters fO and D for B = 0. 

0.1 dZ 0.0 
0.574341 0.469600 
I.08279 1.21672 

mo.1d2 -0,25\;2 
0.37OOO8 0.232624 
1.38498 1.73941 

0.791959(-2) 
0.111662(-l) 
0~175503(~1) 
0,246567(-l) 
0,345524(-l) 
0.536860(-l) 
0.745198(-l) 
0.102818 
0.140867 
0.168766 
0.191557 
0.211164 
0.284811 
0.338878 
0.383480 
0.422345 
0.457308 
0.489421 
0.519353 

0.797998 
0.893408 
0.982946 
0.106831(i) 
0~115055(1) 
0.123039(l) 
0.130831(l) 
0.145980(l) 
0~160700(1) 
0~175116(1) 
0.189307(l) 
0,203330(l) 
0.272007(l) 
0.339674(l) 

0.790224(-2) 
0.111316(-1) 
0.174650(-I) 
0.244880(- 1) 
0.342204(- Ij 
0.528805(-I) 
0,72957O(Gl) 
0.998168(-l) 
0.135161 
0.160497 
0.180821 
0.198031 
0.260351 
0.303712 
0.337956 
0.366675 
0.391675 
0.413909 
0.434045 
0.452504 
0.469599 
0.500533 
0.528095 
0.553073 
0.575994 
0.597234 
0.644638 
0.685961 
0.722840 
0.756303 
0.787046 
0.815561 
0.867277 
0413470 
0.955414 
0.993968 
0,102974(l) 
0.117962(l) 
0.129881(l) 

a, = -c -e + (858 + 114/J)c2 

+ (1591 + 188/3)ce + (732 + 76/3)e2 

- (38 100 + 6892/I + 176p2)c3 

- (75 528 + 96088 + 132p2)c2e 

- (43 065 + 2970p)ce2 

+ (190 960 + 18 480fi)c4 

- 5775~~ + 200 200c3e. (33) 

For very large values of f0 it is possible to 
neglect terms which contain f” and higher powers 
in the denominator. The remaining terms are 
then readily summed giving for (1 + B) the 
much simpler expression : 

-0.375\/2 -0.5\/2 
0.132388 0.050229 

- 0.6,/2 

2.21109 3.10476 

0.788275(-2) 0,784747(-2) 
0.110929(-l) 0.110229(-l) 
0.173697(&l) 0.171975(-l) 
0.243001(-l) 0,239619(-l) 
0,338521(-l) 0.331919(-l) 
0.519918(-l) 0.504188(-l) 
0,712471(--1) 
0,965627(-l) 

0.682540(-l) 

0.129051 
0.909560(-1) 
0.118728 

0.151720 0.137095 
0.169505 0.150852 
0.184270 n~l61791 
0.235249 
0.268160 
0.292480 
0.311650 
0.327344 
0.340517 
0.351770 0.235091 
0.361506 0.234249 
0~370010 0.232623 
0.384118 0.227678 
0.395254 0.221211 
0.404147 0.213798 
0.411282 0.205813 

zlTlG%- - - -nTi75n9 - - . . .___ 
0.176388 
0.155889 
0.136746 
0.119268 
0.103544 
0.8954751L I) 

-. 

0.780735(~2) 
0.109436(-l) 
0.170036(-l) 
0.235838f-1) 
0.324612(-lj 
0.487064-I) 
0.650540(-l) 
0,850970(-l) 
0.108251 
0.122549 
0.132593 
n~140084 

0.159157 
0.164775 
0.164761 
0.161816 
0.157202 
0.151608 
0.145447 
0.138983 
0.132390 
0.119265 
0.106661 
0.94X614(-1, 
0.839989(pij ----__ 
0~741075(-1) 
0,534947(-l) 
0,380732(G I) 
0.268051(-l) 
0.187095(&l) 

0.774178(-2) 
0.108150(~1) 
0,166922(-l) 
0.229820(-l) 
0~313151(--1) 
0.460885(-l) 
0.602897(-l) 
0.766603 -1) 

t 0.937787 -1) 
0.103022 
b.108630 
0.112130 
0.115446 
0.109634 
0~101000 
0.915567(-l) 
0.821497(-l) 
0.731757(-l) 
0.648219(-l) 
0,571669(-l) 
o.502297(p I) 
0,384281(-l) 
0.291124(-l) 
0.218818(-l) 
0.163402(-l) .------ 
0.121353(-l) 
0.565916(-2) 
0.258539(-2) 
0.116374(-2) 
0.518048(-3) 
0.228659(-3) 
0.100252(--3) 
0.189793(-4) 
0.353953(-5) 
0.652947(-6) 
O.l1946O-6) 
0.217144-7) 
0.404659(~11) 
0.709825(-15) 

0,758806(-2) 
0~105155(~1) 
0,159824(-l) 
0,216426(-l) 
0,288372(-l) 
0,407257(Gl) 
0,510360(-l) 
0,613105(-1) 
0,694246(-I) 
0.718451(-l) 
0.719143(Gl) 
0,707666(-l) 
@588487(-l) 
0,456862(G I) 
0.344045(-i) 
0.254141(-l) 
0,185098(-l) 
0.133326(-l) 
0,951733(-2) 
0,674334(-2) 
0.474804(--2) 
0,231%3(-ij 
o~111454(p2) 
0,529480(-3) 
@249258(-3) --_-.- 
@119008(~3) 
0,174O46(-4) 
0.242495CL51 
0~34959+6j 
0472703(-7) 
@650696(-8) 
@889758(G9) 
0,163868(-10) 
0,297344(~_12) 
@533743(-14) 
0,950259(-16) 
0,168095(-17) 
0,273508(-26) 
0,418995(--35) 

I 

_, 

(34) 

0~0001 
oaoo2 
0~0005 
OTlol 
oao2 
om5 
0.01 
0.02 
0.04 
0.06 
0.08 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
I.0 
I.2 
1.4 
I.6 
1.8 
2.0 
2.5 
3.0 
3.5 
4.0 
4.5 
5.0 
6.0 
7.0 
8.0 
9.0 

;t 
20 
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4. VALUES OF THE WALL GRADIENT (b;/B) WHEN 

THE MAIN-STREAM PRESSURE GRADIENT IS 

ZERO 

4.1. General discussion of Table I 
Values of the wall gradient (hi/B) as a function 

of the fluid property group u and the mass flow 
parameter .fb for the case p == 0 are given in 
Table 1. The solutions to the velocity equation 
from which these were calculated, namely 
corresponding values of f,,, fi’, and 87, were 
taken from Emmons and Leigh [6] except for 
the caseJo = 10 which was taken from Watson 
[7]. The values of these parameters are given at 
the head of the appropriate column in Table 1. 

Most of the values of (bJB) were calculated 
by a computer using the method described in 
section 3.3. When both u and ,fb were large, 
however, the values given by the computer were 
inaccurate because the interval in 7 was too 
great. For the bottom left hand corner of 
Table 1, therefore, the values were calculated 
from the series expansion given in section 3.4. 

For various other reasons, such as error in 
supplying the input data, the computer also gave 
incorrect values at isolated positions in other 
parts of the table. These values were then 
recalculated by the method described in section 
3.2 using values of J;I f dq supplied by the 
computer. 

4.2. Accuracy qf Table 1 
The method of computation described in 

section 3.3 was designed to give values of the 
wall gradient (b;/B) with an error less than 
5 x 1O-5 of its own value. Generally, therefore, 
the error in the fifth significant digit should be 
small but considerable error could occur in the 
sixth significant digit. 

The accuracy of the results may be judged by 
comparing the value of (bJB) for u =T 1.0 with 
the corresponding value off’;’ given at the top 
of the table. They should be equal but generally 
differ by a few units in the sixth significant digit. 
The sixth place has therefore been retained in 
Table 1 but it should be emphasized that no 
great reliance can be placed on it. This applies 
particularly to negative values of ,fO since even 
the quantities f;’ and ST are not known to high 
accuracy there. 

During the present work it was found, when 

working with a computer and using accurate 
integration formulae, that very high accuracy in 
wall gradients is often desirable. This was also 
found by Eckert et al. [8] who, when studying the 
velocity equation, required the wall gradient fh 
to ten significant digits in order to obtain 
solutions for the case /3 -= l.O,,f,, = -3.0. Know- 
ledge of the value of the sixth significant digit 
in (bJB), although not exact, may therefore 
prove useful in applying the values to obtain 
other functions of the b-boundary layer. 

Values for high u in the bottom left-hand cor- 
ner of the table were calculated by the formula 
of section 3.4. For lower values of CT, particularly 
for g approaching unity, the values obtained by 
the computer were accurate. There was, how- 
ever, an intermediate zone where both methods 
were inaccurate to some extent. By differencing 
the values and, where necessary, adjusting 
them so as to give smooth, regular differences, 
the error in the values given is believed to be 
confined to the sixth significant digit even here. 
This does not apply to the values in the first 
column because, when plotting d,/d, as a 
function of (r.,d,/K) (see Fig. 3) a few of the 
values obtained from this column did not form 
a continuous curve with points taken from the 
other columns. It is therefore suspected that some 
of the values in this column are in error in the 
fifth significant digit. 

In the part of the table where mass flow is 
outwards ( fO negative) and u > 2 there may be 
some inaccuracy for the following reason. Here 
the integrand in equation (12) starts from unity 
at the wall, increases to a maximum and then 
diminishes to a low value in the main-stream. 
For large u this curve reaches a very high value 
and has steep gradients. In order to obtain good 
accuracy with such a curve a very small interval 
in 7 should be used, whereas the values quoted 
were obtained with an interval of 0.1. No 
estimate has been made of the probable error 
due to this but it would be surprising if the 
values of (bb/B) were inaccurate by more than a 
few per cent of their own values. 

4.3. Comparison with earlier calues 
Of all the two-dimensional, laminar boundary 

layer flows considered in the literature the case 
when both the main-stream pressure gradient 
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and the rate of mass transfer through the 
interface are zero has received the greatest 
attention; this is the case& = 0 in Table 1. 

In order to compare the present results for this 
case with exact values given in the literature 
Table 2 has been drawn up. This table contains 
some values for low G not included in Table I ; 
these were calculated by the method described 
in section 3.2. 

Table 2. ~o~~ar~soa witk ~u~l~s~ed vaks for 
8=O,f,=O 

(a) Present values (b) Published values 

(4 

0,0415366 
0.057595 
0~072P57 
0.119346 
0.19803 1 
0.366675 

0.391675 

0.413909 

0434045 

0.452504 

0.469599 

0597234 
0.913470 
l-02974 
1.17962 

-- 

I -/- lb) 

0@41537 
0.057593 
0.072959 
Cl1935 
0.1953 
0.3664 

rO.3915 
10.3917 

~~:~~~~ 

{ 
0.4340 
0.4342 
0.4525 
046960 
0.4695 
0.5971 
0.9135 
I ,029s 
1.1796 

The numbers in the fast column give the publication in 
the reference list. 

From this table it may be seen that values in 
the literature sometimes disagree with each other 
by a few units in the fourth significant digit. The 
error in the value given by Merk [9] for u = 0.1 
is more serious, however, as it appears to be 
l-4 per cent too low. The agreement between the 
present values and those given by Sparrow and 
Gregg [IO] for low values of u is very good, 
which confirms the formula for Part II given in 
equation (15) since this Part dominate for very 
low u. 

This case when j3 = 0 and f0 = 0 was atso 

considered in Paper Ja, where an asymptotic 
form&a was given for calcuIating (b$B) for any 
high value of C. It appears from the present 
resutts that the formula gives an accuracy of one 
unit in the fourth significant digit even when CT 
is as low as O-5. 

The only extensive results giving values of 
(~~/3) in the presence of mass transfer were those 
by Mickley et al. [II], which were also for the 
case /3 =z 0. On the whole the present values 
agree with their results to the same extent as for 
the case of no mass transfer given in Table 2, 
This does not hold, however, for large a and 
high bIowing rates (large negative &). The 
greatest difference occurs forfo = -05y’2 and 
CT = 50, the highest blowing rate and the 
largest value of u considered by the earlier 
authors. Whereas they obtained for f&/B) the 
value 0.9963 X 10s4, the present value is 
14025 x LO+, a difference of 04 per cent. A 
possible source of error in the present results 
for this part of the table has been given in 
section 4.2. 

5. FGRM~LA~ FOR OBTA~G OTI-KER FUNCS 

TIONS FROM (&‘E) 

It was shown in Paper 3 that many other 
functions relating to the &boundary layer can 
be calculated from values of (b,/B) for known 
values of the parameters /3, u and fa. For ease of 
reference these are quoted below but will not be 
discussed; the reader is referred to other papers 
in the present series for more detailed discussion 
of these functions. 

The right-bard sides of the folIowing equations 
are written in terms of “similar” functions. 
Some of these expressions differ from the forms 
used in Paper 3 ; this is merefy so that the 
quantities on the left may be evaluated directly 
in terms of functions occurring in Table 1 with- 
out intermediate calculation. A few of these 
functions are identically zero for the particular 
case fl = 0 but are included to make the list 
complete. 

{36) 

(35) 
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UG dAz” _.._ = 
v dx 

(37) 

(38) 

(39) 

(40) 

(41) 

(42) 

(43) 

1 

(46) 

(47) 

Note that the functions X, Y, Wand Z form 
the basis of an approximate method of esti- 
mating boundary layer thicknesses which is 
most accurate for large values of (r. For low 0 
the use af different functions would probably 
result in better accuracy. 

6. THE ASYMPTOTIC BJZHAVIOUR OF FWNC- 

TIONS IN THE ~-~U~~~Y LAYER 

Tn this section a brief examination will be 
made of the asymptotic behaviour of functions 

relating to the b-boundary layer for extreme 
values of some of the parameters. The conclu- 
sions arrived at will then be used in section 7 to 
draw curves showing the relationships between 
some of these functions. 

6.1. The limiting case u --f 0 
On examining equation (15) it may be seen 

that as 5 + 0 Part I tends to the value d; this, in 
similar co-ordinates, is the distance from the 
interface at which the flow is virtually inviscid. 
At the same time, ‘Fart II tends to the value 
(57/2cr)l’” since both the factor containing the 
error function and the exponential factor tend 
to unity. For very small u Part 1 is clearly 
negligible compared with this, so the following 
approximations apply: 

(48) 

As o .+ 0 
j A, 2 - -z= I ~, ; = 0636620. (49) 

It is interesting to note that equation (49) applies 
exactly for purely inviscid flow when u = 0. 

For small values of cr the mass transfer rate, as 
measured by the value of the parameter fo, has 
only a small effect on (bh/B). Referring to the 
smallest value of o included in Table 1, namely 
u = 0.0001, for which (20/7~)“~ = 0.00797885, 
the extreme values of f. considered, namely 
+lO and -0=6y’2, give values of (bJB) of 
0~00861969 and 0*00758806 respectively. For 
smaller values of tr these values of (bJB) would 
be nearer to (2~/rr)*‘~ and would therefore cover 
a narrower range. 

6.2. The limiting case cf -+ ocj 
The behaviour of boundary layer functions 

for large CT when no mass flows through the 
interface may be estimated from the asymptotic 
formulae given in Paper 3a. This case will not, 
therefore, be discussed here except to state that 
for accelerated and slightly decelerated flows 
(b$E) is proportional to alI3 and for flows very 
near to or at the separation point (b$‘B) is 
proportional to S4. 

Contrary to what happens for low values of 
u, the mass transfer rate has a large effect on 
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(Q/B) when ct is large. For positive values off,, 
for example, the driving force B is very close to 
- 1 as soon asfo has a non-zero value, so that the 
following approximation then applies: 

0 large, f0 positive : 4 0 - 
B 

= afo. (50) 

When f. is negative, on the other hand, 3 tends 
to infinity as soon as f0 is non-zero and (hi/B) 
tends to zero. 

Accurate numerical values of (hi/B) for 
positivef, and large CT can be obtained from the 
asymptotic formula given in section 3.4. Nega- 
tive values off0 would require some modification 
of the methods already described. 

6.3. Intensive suction 
When considering the velocity boundary 

layer the case of intensive suction gives rise to the 
well-known asymptotic suction profile. In an 
analogous manner the b-profile can 
approach the asymptotic profile: 

= (1 - e-QfoQ). 

Instead of using this, however, the case of 
intensive suction can be examined more ac- 
curately by referring to equation (34). Since fh’ 
is almost equal to f0 for sufficiently large fO, 
the following relationships hold: 

be shown to 

(51) 

~52) 

i-----I - 
b; _ of0 __l.-~ 
*/ 1 - [Ml + ~)SZl 

(53) 

%f& ___. =_ 
UM*) - h + 0) 

-.-- 
K (54) 

A, -._ = 
A, (Q+(~,~jj) * (5-9 

When& is very large the last two relationships 
reduce to : 

~4 4 

- 7=d, 
(56) 

which may also be obtained by evaluating the 
convection thickness A, for the asymptotic 

suction profiles relating to the velocity and the 
fun~jon (b/B) respectively. 

6.4. “Separation” on a flat plate 
When the main-stream pressure gradient is 

zero and the blowing rate reaches the value 
f0 = -0.875745, the wall shear, represented in 
“similar” co-ordinates by fy, becomes zero. 
The velocity layer is then &id to separate. This 
case has been discussed by Emmons and Leigh 
[6] in giving similar solutions to the velocity 
equation for flow over a flat plate. 

For this and all higher blowing rates the 
following relationship holds : 

UG da2 v 6 
F E --.-2,2_02 

2 
v&x v’ 

(57) 

A physical interpretation of this is that the 
momentum boundary layer thickness 6, grows 
with distance x at a rate which is proportional 
to the blowing rate, since the group (u,$,/v), 
which can be shown to be numerically equal to 
f& is a suitable measure of the blowing rate (see 
Papers 1 and 2). 

An analogous situation must also apply to the 
b-bounda~ layer. In terms of equation (12) the 
integral on the right-hand side becomes infinite 
so that (bJB) = 0. Since hb(= -ufJ is still 
finite this means that B is infinite. This clearly 
holds for the case u = 1.0 by direct analogy with 
the velocity equation, but it must apply whatever 
the value of u. 

The following relationships therefore hold for 
allf, beyond the valuef,, = -0.875745: 

b; _ ib) - B O 
B=oO (59) 

A, =0 (60) 

42 
--- = 

K Tf,” (61) 

(62) 

(63) 
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In view of these relationships and the success 
obtained with the velocity equation when the 
mass transfer parameter (u&,/v) was used, it 
may be an advantage, in some respects, to use the 
parameter (t+LJK) instead of B{= (v,d,/K)} 
for the b-boundary layer. 

7. CURVES OF FUNCTIONS OF Tm ~~U~~Y 
LAYER 

7.1. Variation of Nusselt number with mass trans- 
fer driving force 

Equation (35) shows that the wall gradient 
(b&l@ is a measure of the local Nusselt number 
NV. Figs. 1 and 2 show how this gradient, when 
multiplied by an appropriate power of o, varies 
with the mass transfer driving force B for 

various values of ET. The ordinate contains the 
power of 5 in order to bring closer together 
curves for different values of G. Fig. 1 is con- 
cerned with high values of (I and Fig. 2 with 
low values. 

(a) High values of u. Fig. 1 is an extension to 
wider ranges in the values of the driving force 
B and the Prandtl~Sc~idt number u of Fig. 2 
in Paper 3. The behaviour of the curves has 
already received some discussion in that paper 
so only a few additional remarks will be made 
here. 

The sections shown as broken lines for high 
positive values of B indicate that the curves 
have either been drawn between widely separated 
points or have been extrapolated by giving them 

I I I IllIll I I Illilll I j , 0.7‘ 
1 0. 

FIG. 1. Variation of the function O- II3 (b;/B) with mass transfer driving force B for high values of g. 
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FIG. 2. Variation of the function o- I’* (bill?) with mass transfer driving force B for low values of (I. 

the same shape as neighbouring curves whose 
shape was known. On this scale the error brought 
about by this would be very small. 

For negative values of B, some lines have 
been omitted for clarity. Of the values of (T near 
unity, for example, only curves for a = O-7 and 
1.0 have been included because the curves for 
other values, at least down to u = 0.5, are 
virtually coincident with these. 

The point indicated as CT = cc on the line 
B ===Oisgivenby: 

u-l’3 (%) = & (,,),, = 0.479017 (64) 

where r denotes the gamma function. This 
relationship has been discussed in Paper 3a. 

2 

(b) Low values of u. It was shown in section 
6.1 that for small values of CJ the wall gradient 
(hi/B) is proportional to u112. In Fig. 2, therefore 
the ordinate is c~/~(~JB). The ends of the 
curves in this figure correspond to the extreme 
values off0 included in Table 1. 

The most striking feature about these curves 
is their behaviour when B is positive, i.e. when 
mass flows outwards through the interface. For 
any fixed value of u the ordinate quantity 
decreases as B increases. As the value of a 
decreases, however, the curves descend more and 
more rapidly. From the discussion already given 
in section 6.4 each of these curves must tend to 
zero on the right when the blowing rate is high 
enough to cause the velocity layer to separate. 
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uod, 
K 

FIG. 3. Variation of the ratio of boundary layer thicknesses (4&$) with (v,A,/K) when mass transfer is inwards. 

The point shown as u = 0 is given by: 

o-1/2 (2) = c;)‘i’ = 0*797885. (65) 

7.2. Variation of the ratio As/A, with mass transfer 
(a) Inward mass transfer. It has already been 

seen in section 6.2 that for intensive inward 
mass transfer the driving force B approaches - 1 
and the wall gradient @A,!@ becomes very large. 
In order to accommodate such points on Figs. 
1 and 2 the co-ordinate axes must be extended 

both upwards and to the left. It is not, of course, 
possible to include the asymptote itself since B 
is then - 1 and @b/B) is infinite. 

On the other hand the ratio AZ/A, and the 
mass transfer parameter -(u&K) are always 
between 0 and 1 when the mass transfer is 
inwards. Fig. 3 shows the relationship between 
these quantities for constant values of 5. This 
figure is analogous to part of Fig. 2 in Paper 2 
where the ratio HE&.== 8JS4) was plotted as a 
function of the mass transfer parameter (z@&/v) 
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(note that v, in the earlier paper is here denoted 
by v,J. 

Since the ratio of the abscissa to the ordinate 
for any point on these curves gives the value 
of B{= (v,,A4/K)}, lines of constant B are 
straight lines of slope l/B passing through the 
origin. 

The full lines in this figure cover the range of 
mass transfer included in Table 1, namely, up to 
an inward mass flow rate corresponding to 
.fO = +lO. The broken portions of these lines 
represent extrapolations to the point on the 
asymptote, represented by a triangle, which 
satisfies equation (56). Extrapolations have not 
been included for the two lowest values of u 
as it was difficult to judge the shapes of the 
curves over such a long distance. They are 
almost, but not exactly, linear in this region. 

For any point on these curves or the extra- 

polations the wall gradient @i/B) can be calcu- 
lated from the formula: 

b' A 0 ._o =_? 

&2 

B A, ‘X442/~) + @,/A3 Y2 * W) 

Clearly the accuracy of this diminishes as the 
asymptote is approached since -(v,A,/K) and 
A,/A, are then almost equal. 

Two points should be noted regarding the 
general shapes of these curves. Firstly, it was 
noted when discussing Fig. 2 in section 7.1 that, 
for the case of outward mass transfer, the 
ordinate descended more and more rapidly with 
increasing values of B as the value of 0 decreased. 
This effect seems to be evident even on the 
suction side in Fig. 3. Secondly, the approach 
to the asymptote for intensive suction is from 
below when 0 is small (i.e. u < 2), whereas when 
u is large the approach is from above. 

“04 Sepihion 
Y point 

FIG. 4. Variation of the ratio (4&lJ with (q,dJ~) when mass transfer is outwards. 
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(b) Unaware mass ~~ff~~fer. It was shown in 
section 6.4 that when the velocity boundary 
layer separates from the interface, B is infinite 
and f&,/B) is zero for all values of C. This point 
also cannot be included in Figs. 1 and 2. Instead 
of using the mass transfer parameter (u,d,/K) 
along the abscissa as in Fig. 3, however, it 
follows from equation (61) that the parameter 
(u,$I&) would be better since the point of 
separation would then be the same for all cr. 

The relationship between the ratio (L&/O,) 
and this mass transfer parameter is shown in 
Fig. 4. All the curves are seen to converge on the 
point where (d2/f&) = 0, (c,O&) = 0.766929. 

Again the full lines represent the results con- 
tained in Table 1 and the extensions, shown as 
broken lines, join the point for& -:= --0*61/2 to 
the separation point. For very low values of CY 
the curves form a wide arc to the right before 
returning to cut the abscissa. 

These extrapolations to the separation point 
can clearly be used to extend Figs. 1 and 2 to the 
right, The accuracy of this would depend 
largely on the accuracy to which (,O,jd3 can be 
estimated since inaccuracy in the functio~l 
((v~~/K) -+ (&jd,)]‘“” occurring in equation 
(66) would introduce only a small error. 

ACKNOWLEDGEMENTS 

The present work forms part of the research programme 
of the Division of Food Preservation, C.S.I.R.O., 
Australia. The author is indebted to Dr. J. M. Bennett 
and his staff at the Adolph Basser Computing Labora- 
tory, University of Sydney, in particular Mr. R. Whitfield, 
who computed most of the vaiues of the wall gradient 
given in Table 1. He is also grateful to Miss J. D. Hay- 
burst who calculated the other values. 

REIFERENCES 

I. D. B. SPALDING, Mass transfer throu~ laminar 
boundary layers-l. The velocity boundary layer. 
ht. J. Heat Mass Transfer. 2, NOS. 112, 15 (1961). 
Referred to as Paper 1.” 

2. D. B. SPALDING and H. L. EVANS, Mass transfer 
through laminar bound~y layers-;?. Auxiliary 
functions for the velocity boundary layer. ht. J. 
ffeut Mass Transjk, 2, No. 3, I99 (1961). Referred 
to as Paper 2. 

3. D. B. SPALDENG and H. L. EVANS, Mass transfer 
through laminar boundary Iayers-3. Similar solu- 
tions to the &-equation. Int. J. Heat Mass Transfer, 
2, No. 4, 314 (1961). Referred to as Paper 3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

II. 

H. L. EVANS, Mass transfer through Iaminar boun- 
dary layers-3a. Similar solutions to the b-equation 
when B = 0 and (3 ..:: 0.5. ht. J. Heat Mass Tram&v, 
3, No. 1, 26 (1961). Referred to as Paper 3a. 
D. B. SPALDING, A standard formulation of the steady 
convective mass transfer problem. lnt. J. Heut Mass 
Transjb+, 1, Nos. 2,‘3, 192 (1960). 
H. W. EMMOW and D. LEK~H, Tabulation of the 
Blasius function with blowing and suction. Haward 
Univeusiry, ~~~n~ust~~~ Aern&namirs tab. Interim 
Tech. Report No. 9 (1953). 
E. J. W~rsou, The asymptotic theory of boufldary 
layer Aow with suction. &it. Aem Res. Council 
R. and M. 2619 (1952). 
E. R. C. ECKERT, F. L. DONOLGHE and B. J. MOORE, 
Velocity and friction chamcterist~~s of iaminar 
viscous boundary layer and channel flow with 
ejection or suction. N.A,C.A. Tech. Note 4102 (1957). 
H. J. MERK, Rapid ~Iculations for boundary-payer 
transfer using wedge solutions and asymptotic 
exoansions. J. F’luid Mech.. 5. 460 (1959). 
E.-M. SPARROW and J. L.: GRECZ: Details of exact 
low Prandtl number boundary-layer solutions for 
forced and for free convection. N.A.S.A. Memo. 
2-27-59E f 19591. 
H. S. T&KL&, R. C. Ross, A. L. SQUYERS and 
W. E. STEWART, Heat, mass and momentum transfer 
for flow over a flat plate with blowing and suction. 
N_A.C.A. 7‘erh. Nora 3208 (1954). 

APPENDIX 

The displacentent and nto~~~entum boundary 
layer thicknesses of the velocity layer are 
usually evaluated by integrating certain quanti- 
ties throughout the boundary layer. The stream 
function is, however, known in the main-strea~l 
whether solutions are taken from tables in the 
literature or evaluated on a computer. The 
formulae given below can be used for ~a~cuiating 
functions associated with the velocity layer 
without the need for integration. The first two 
formulae are defilljt~ons of 8: and 8:. The 
importance and applications of the succeeding 
functions have been discussed in Papers 1 and 2 
of the present series. 

641) 
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H,, = ;r 645) 
2 

!j b!!! = p(p)2 
(At0 

tj2d = f;’ 8; (‘46) 

Q2 
~~~ =-folq 647) F, E “,“- gx’ = 2 { 1 - ,f3}(8;)2 

v (A91 


